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‭The‬ ‭rapid‬ ‭advancement‬ ‭of‬ ‭astronomical‬ ‭survey‬ ‭technologies,‬ ‭such‬ ‭as‬ ‭the‬ ‭Vera‬ ‭C.‬ ‭Rubin‬ ‭Observatory’s‬ ‭Legacy‬
‭Survey‬‭of‬‭Space‬‭and‬‭Time‬‭(LSST),‬‭is‬‭expected‬‭to‬‭generate‬‭millions‬‭of‬‭transient‬‭events‬‭annually,‬‭posing‬‭significant‬
‭challenges‬‭in‬‭processing‬‭large‬‭volumes‬‭of‬‭unlabeled‬‭data.‬‭To‬‭address‬‭this,‬‭a‬‭deep‬‭learning‬‭model‬‭was‬‭developed,‬
‭combining‬‭a‬‭Recurrent‬‭Neural‬‭Network‬‭Variational‬‭Autoencoder‬‭(RNN-VAE)‬‭for‬‭dimensionality‬‭reduction‬‭with‬‭a‬
‭Gradient‬ ‭Boosting‬ ‭Classifier‬ ‭for‬ ‭real-time‬ ‭classification‬ ‭of‬ ‭transient‬ ‭events.‬ ‭This‬ ‭model‬ ‭efficiently‬ ‭classifies‬
‭galactic‬ ‭and‬ ‭extragalactic‬ ‭transients‬ ‭without‬ ‭the‬ ‭need‬ ‭for‬ ‭labeled‬‭data.‬‭Using‬‭the‬‭PLAsTiCC‬‭dataset,‬‭the‬‭model‬
‭achieved‬‭an‬‭AUC-ROC‬‭score‬‭of‬‭0.94‬‭and‬‭F-1‬‭score‬‭of‬‭0.89,‬‭demonstrating‬‭strong‬‭performance‬‭in‬‭distinguishing‬
‭between‬ ‭various‬ ‭transient‬ ‭classes,‬ ‭including‬ ‭rare‬ ‭events.‬ ‭This‬ ‭approach‬ ‭offers‬ ‭a‬ ‭scalable‬ ‭solution‬‭for‬‭real-time‬
‭astronomical‬ ‭surveys,‬ ‭enhancing‬ ‭both‬ ‭classification‬ ‭accuracy‬ ‭and‬ ‭resource‬ ‭allocation‬ ‭in‬ ‭future‬ ‭data-rich‬
‭environments.‬
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‭Introduction‬
‭The‬‭rapid‬‭advancement‬‭of‬ ‭astronomical‬‭survey‬‭technologies‬‭is‬‭set‬‭to‬
‭provide‬‭astronomers‬ ‭with‬‭unprecedented‬‭volumes‬‭of‬‭data.‬‭The‬‭Vera‬
‭C.‬ ‭Rubin‬ ‭Observatory’s‬ ‭decade-long‬ ‭Legacy‬ ‭Survey‬ ‭of‬ ‭Space‬ ‭and‬
‭Time‬ ‭(LSST),‬ ‭in‬ ‭particular,‬ ‭is‬ ‭expected‬ ‭to‬ ‭detect‬ ‭millions‬ ‭of‬
‭transient‬ ‭events‬ ‭annually‬ ‭(Ivezić‬ ‭et‬ ‭al.,‬ ‭2019).‬ ‭This‬ ‭data‬‭influx‬‭offers‬
‭the‬ ‭potential‬ ‭for‬ ‭the‬ ‭discovery‬ ‭of‬ ‭rare‬ ‭and‬ ‭previously‬ ‭unknown‬
‭transient events.‬

‭However,‬ ‭managing‬ ‭this‬ ‭overwhelming‬ ‭volume‬ ‭of‬ ‭data‬
‭presents‬ ‭significant‬ ‭challenges.‬ ‭Identifying‬ ‭which‬ ‭transients‬ ‭merit‬
‭further‬ ‭investigation‬‭becomes‬‭increasingly‬ ‭difficult‬ ‭with‬‭the‬ ‭scale‬ ‭of‬
‭incoming‬ ‭data.‬ ‭Spectroscopic‬ ‭follow-up,‬ ‭a‬ ‭critical‬ ‭method‬ ‭for‬
‭understanding‬ ‭transient‬ ‭events,‬ ‭is‬ ‭both‬ ‭resource-intensive‬ ‭and‬
‭requires‬ ‭a‬ ‭meticulous‬ ‭approval‬ ‭process,‬ ‭further‬ ‭complicating‬ ‭the‬
‭selection‬ ‭of‬ ‭optimal‬ ‭targets‬ ‭for‬ ‭observation.‬ ‭Additionally,‬ ‭transient‬
‭events‬ ‭must‬ ‭be‬ ‭captured‬ ‭near‬ ‭their‬ ‭peak‬ ‭brightness‬ ‭to‬ ‭justify‬ ‭the‬
‭allocation of these limited resources.‬

‭To‬‭address‬ ‭these‬ ‭challenges,‬ ‭efficient‬ ‭methods‬‭for‬‭real-time‬
‭labeling‬ ‭and‬ ‭prediction‬ ‭of‬ ‭transient‬ ‭events‬ ‭are‬ ‭urgently‬ ‭required.‬
‭Early‬ ‭efforts‬ ‭in‬ ‭this‬ ‭field‬ ‭focused‬ ‭on‬ ‭photometric‬ ‭classification‬ ‭to‬
‭build‬ ‭pure‬ ‭samples‬ ‭of‬ ‭transients‬ ‭(Boone,‬ ‭2019).‬ ‭More‬ ‭recent‬
‭approaches‬ ‭have‬ ‭shifted‬ ‭towards‬ ‭anomaly‬ ‭detection,‬ ‭with‬ ‭several‬
‭methods‬ ‭demonstrating‬ ‭success‬ ‭when‬ ‭using‬ ‭complete‬ ‭light‬ ‭curve‬
‭data‬ ‭from‬ ‭extensive‬ ‭surveys‬ ‭(Pasquet‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Muthukrishna‬‭et‬
‭al.,‬ ‭2019).‬ ‭However,‬ ‭these‬ ‭models‬ ‭struggle‬ ‭when‬ ‭faced‬ ‭with‬
‭incomplete‬ ‭data,‬ ‭a‬ ‭common‬ ‭challenge‬ ‭in‬ ‭real-time‬ ‭analysis.‬ ‭To‬

‭overcome‬ ‭this‬ ‭limitation,‬ ‭recent‬ ‭studies‬ ‭have‬ ‭explored‬ ‭the‬ ‭use‬ ‭of‬
‭autoencoders to manage unlabeled data (Morawski et al., 2021).‬

‭This‬ ‭paper‬ ‭proposes‬ ‭a‬ ‭model‬ ‭aimed‬ ‭at‬ ‭real-time‬
‭classification‬ ‭of‬ ‭galactic‬ ‭and‬ ‭extragalactic‬ ‭transient‬ ‭events,‬ ‭building‬
‭on‬ ‭recent‬ ‭advancements‬ ‭in‬ ‭deep‬ ‭learning‬ ‭and‬ ‭autoencoder-based‬
‭architectures.‬ ‭Section‬ ‭two‬ ‭describes‬ ‭the‬ ‭dataset‬ ‭and‬ ‭feature‬
‭extraction‬ ‭process,‬ ‭while‬ ‭section‬ ‭three,‬ ‭four,‬ ‭and‬ ‭five‬ ‭outline‬ ‭the‬
‭model‬‭and‬‭training‬‭process‬‭of‬‭the‬‭RNN-VAE‬‭and‬‭Gradient‬‭Boosting‬
‭Classifier‬ ‭(GBC).‬ ‭The‬‭results‬ ‭are‬ ‭discussed‬‭in‬ ‭section‬‭six,‬ ‭where‬ ‭the‬
‭model‬ ‭is‬ ‭heavily‬ ‭evaluated‬‭and‬‭compared‬‭to‬ ‭baseline‬‭models,‬‭and‬‭its‬
‭limitations‬ ‭and‬ ‭future‬ ‭work‬ ‭are‬ ‭further‬ ‭stated.‬ ‭Finally,‬ ‭the‬ ‭paper‬ ‭is‬
‭concluded in section 7.‬

‭Data‬
‭The‬ ‭model‬ ‭was‬ ‭trained‬‭and‬‭evaluated‬‭using‬‭the‬ ‭Photometric‬ ‭LSST‬
‭Astronomical‬ ‭Time-series‬ ‭Classification‬ ‭Challenge‬ ‭(PLAsTiCC)‬
‭dataset,‬ ‭which‬ ‭was‬ ‭initially‬ ‭created‬‭for‬ ‭a‬ ‭public‬ ‭competition‬‭hosted‬
‭on‬ ‭Kaggle.‬ ‭Although‬ ‭the‬ ‭competition‬ ‭has‬ ‭since‬ ‭concluded,‬ ‭the‬
‭dataset‬ ‭and‬‭the‬‭methods‬‭it‬‭inspired‬‭remain‬‭highly‬‭relevant‬‭due‬‭to‬‭the‬
‭scale‬ ‭and‬ ‭innovation‬ ‭it‬ ‭introduced‬ ‭to‬ ‭the‬ ‭data‬ ‭science‬ ‭community‬
‭(Hložek‬ ‭et‬ ‭al.,‬ ‭2020).‬ ‭The‬ ‭PLAsTiCC‬ ‭dataset‬ ‭contains‬ ‭simulated‬
‭data‬ ‭based‬ ‭on‬ ‭approximately‬ ‭three‬ ‭years‬ ‭of‬ ‭observation‬ ‭from‬ ‭the‬
‭Rubin‬‭Observatory‬‭(Kessler‬‭et‬‭al.,‬‭2019).‬‭It‬‭includes‬‭light‬‭curves‬‭and‬
‭metadata‬ ‭such‬ ‭as‬ ‭redshift,‬ ‭flux,‬ ‭magnitude,‬ ‭corresponding‬ ‭errors,‬
‭and‬‭additional‬‭physical‬‭parameters‬‭across‬‭six‬‭observational‬‭passbands‬
‭(ugrizy).‬ ‭For‬ ‭this‬ ‭model,‬ ‭light‬ ‭curves‬ ‭and‬‭metadata‬ ‭were‬ ‭integrated‬
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‭and‬‭processed‬‭through‬‭the‬‭RNN-VAE‬‭for‬‭feature‬‭extraction‬‭prior‬‭to‬
‭classification.‬

‭For‬ ‭this‬ ‭study,‬ ‭100,000‬ ‭data‬ ‭points‬ ‭spanning‬ ‭sixteen‬
‭transient‬ ‭event‬ ‭classes‬ ‭were‬ ‭used.‬ ‭These‬ ‭classes‬ ‭were‬ ‭selected‬ ‭to‬
‭provide‬ ‭a‬ ‭balanced‬ ‭representation‬ ‭of‬ ‭both‬ ‭common‬ ‭and‬ ‭rare‬
‭astronomical‬ ‭events.‬ ‭Frequently‬ ‭occurring‬ ‭events,‬ ‭such‬ ‭as‬
‭supernovae,‬ ‭were‬ ‭well-represented,‬ ‭allowing‬‭the‬ ‭model‬ ‭to‬‭effectively‬
‭learn‬‭their‬‭distinguishing‬‭characteristics.‬‭Conversely,‬‭rarer‬‭events‬‭like‬
‭Tidal‬ ‭Disruption‬ ‭Events‬ ‭(TDEs)‬ ‭and‬ ‭Calcium-rich‬ ‭transients‬
‭(CaRTs)‬ ‭were‬ ‭included‬‭to‬ ‭assess‬ ‭the‬ ‭model’s‬‭capability‬‭in‬‭classifying‬
‭minority‬‭classes,‬‭which‬‭typically‬‭present‬‭more‬‭challenges‬‭due‬‭to‬‭their‬
‭limited instances.‬

‭To‬ ‭ensure‬ ‭balance,‬ ‭event‬ ‭classes‬ ‭with‬ ‭fewer‬ ‭than‬ ‭three‬
‭instances‬ ‭were‬ ‭excluded‬‭from‬‭the‬‭analysis,‬‭as‬‭they‬‭would‬‭not‬‭provide‬
‭sufficient‬ ‭data‬ ‭for‬ ‭reliable‬ ‭classification.‬ ‭This‬ ‭selection‬ ‭process‬
‭enabled‬ ‭the‬ ‭model‬ ‭to‬ ‭be‬ ‭exposed‬ ‭to‬ ‭a‬ ‭diverse,‬ ‭yet‬ ‭representative,‬
‭range‬ ‭of‬ ‭transient‬ ‭phenomena,‬ ‭ensuring‬ ‭it‬ ‭could‬ ‭generalize‬ ‭well‬
‭across‬ ‭different‬ ‭event‬ ‭types.‬ ‭Balancing‬ ‭the‬ ‭dataset‬ ‭was‬ ‭crucial‬ ‭in‬
‭mitigating‬ ‭bias‬ ‭toward‬ ‭overrepresented‬ ‭classes,‬ ‭while‬ ‭still‬ ‭allowing‬
‭the‬ ‭model‬ ‭to‬ ‭effectively‬ ‭handle‬ ‭underrepresented,‬ ‭yet‬ ‭scientifically‬
‭significant,‬ ‭events.‬ ‭Further‬ ‭details‬ ‭of‬ ‭the‬ ‭data‬ ‭selection‬ ‭process,‬
‭including‬‭class‬ ‭distributions‬ ‭and‬‭the‬ ‭methods‬‭used‬‭to‬ ‭preserve‬‭their‬
‭frequencies, are discussed in the pre-processing section.‬

‭AGN (Active Galactic Nuclei)‬
‭Active‬ ‭Galactic‬ ‭Nuclei‬ ‭(AGN)‬‭are‬ ‭highly‬‭energetic‬‭regions‬
‭located‬ ‭at‬ ‭the‬ ‭centers‬ ‭of‬ ‭galaxies,‬ ‭characterized‬ ‭by‬ ‭the‬
‭emission‬ ‭of‬ ‭intense‬ ‭radiation‬ ‭and‬‭variability‬ ‭in‬ ‭brightness‬
‭over‬ ‭different‬ ‭timescales.‬ ‭Despite‬‭being‬‭relatively‬‭common,‬
‭AGNs‬‭make‬‭up‬‭approximately‬‭6.3%‬‭of‬‭the‬‭dataset,‬‭aligning‬
‭with their prevalence in the universe.‬

‭CaRT (Calcium-Rich Transients)‬
‭Calcium-rich‬‭transients‬‭are‬‭a‬‭rare‬‭type‬‭of‬‭supernova‬‭known‬
‭for‬ ‭their‬ ‭rapid‬ ‭evolution,‬ ‭relatively‬ ‭low‬ ‭peak‬ ‭luminosity,‬
‭and‬ ‭strong‬ ‭calcium‬ ‭emission‬ ‭lines.‬ ‭These‬ ‭events‬ ‭account‬
‭for‬ ‭roughly‬ ‭0.3%‬ ‭of‬ ‭the‬ ‭dataset,‬ ‭accurately‬ ‭reflecting‬‭their‬
‭rarity in astronomical observations.‬

‭EB (Eclipsing Binaries)‬
‭Eclipsing‬‭Binaries‬ ‭are‬ ‭systems‬‭of‬ ‭two‬‭stars‬‭whose‬‭orbits‬‭are‬
‭oriented‬‭such‬‭that‬‭they‬‭periodically‬‭eclipse‬‭each‬‭other‬‭from‬
‭the‬ ‭perspective‬ ‭of‬ ‭Earth.‬ ‭This‬ ‭leads‬ ‭to‬ ‭fluctuations‬ ‭in‬
‭brightness.‬ ‭Given‬ ‭their‬ ‭common‬ ‭occurrence,‬ ‭EBs‬ ‭are‬
‭well-represented in the dataset.‬

‭ILOT (Intermediate Luminosity Optical Transients)‬
‭Intermediate‬ ‭Luminosity‬ ‭Optical‬ ‭Transients‬ ‭(ILOTs)‬ ‭are‬
‭astronomical‬ ‭events‬ ‭that‬ ‭explode‬ ‭with‬ ‭brightness‬ ‭levels‬
‭between‬ ‭novae‬ ‭and‬ ‭supernovae.‬ ‭These‬ ‭rare‬ ‭occurrences‬
‭account for less than 0.1% of the dataset.‬

‭M-Dwarf (Low-Mass Stars)‬
‭M-dwarfs,‬ ‭also‬ ‭known‬ ‭as‬ ‭low-mass‬ ‭stars,‬ ‭are‬ ‭stars‬ ‭smaller‬
‭and‬ ‭significantly‬ ‭less‬ ‭luminous‬ ‭than‬ ‭the‬ ‭Sun.‬ ‭These‬ ‭stars‬
‭represent‬ ‭a‬ ‭substantial‬ ‭portion‬ ‭of‬ ‭the‬ ‭dataset‬ ‭due‬‭to‬ ‭their‬
‭frequency in the universe.‬

‭Mira (Mira-Type Variable Stars)‬
‭Mira-type‬‭variable‬ ‭stars‬ ‭are‬ ‭cool‬ ‭red‬‭giants‬‭known‬‭for‬‭their‬
‭periodic‬ ‭changes‬ ‭in‬ ‭brightness.‬ ‭They‬‭are‬ ‭massive‬ ‭and‬‭very‬
‭luminous‬‭compared‬‭to‬‭the‬‭Sun,‬‭although‬‭they‬‭make‬‭up‬‭less‬

‭than‬ ‭0.1%‬ ‭of‬ ‭the‬ ‭dataset,‬ ‭reflecting‬ ‭their‬ ‭status‬ ‭as‬ ‭a‬
‭minority event.‬

‭PISN (Pair Instability Supernovae)‬
‭Pair‬ ‭Instability‬ ‭Supernovae‬ ‭(PISN)‬ ‭are‬ ‭rare‬ ‭types‬ ‭of‬
‭supernovae‬‭that‬ ‭result‬ ‭from‬‭collisions‬‭between‬‭gamma‬‭rays‬
‭and‬‭atomic‬‭nuclei,‬ ‭producing‬‭free‬ ‭electrons‬‭and‬‭positrons.‬
‭These events also make up less than 0.1% of the dataset.‬

‭RRL (RR Lyrae Variable Stars)‬
‭RR‬ ‭Lyrae‬ ‭variable‬ ‭stars‬ ‭are‬ ‭periodic‬ ‭variable‬ ‭stars‬
‭commonly‬ ‭found‬ ‭in‬ ‭globular‬ ‭clusters.‬ ‭They‬ ‭make‬ ‭up‬ ‭a‬
‭significant‬ ‭portion‬ ‭of‬ ‭the‬ ‭dataset‬ ‭due‬ ‭to‬ ‭their‬
‭well-understood light curve characteristics.‬

‭SLSN-I (Type I Superluminous Supernovae)‬
‭Type‬ ‭I‬ ‭Superluminous‬ ‭Supernovae‬ ‭(SLSN-I)‬ ‭are‬
‭hydrogen-free‬ ‭stellar‬ ‭explosions‬ ‭that‬ ‭are‬ ‭roughly‬ ‭ten‬‭times‬
‭more‬ ‭luminous‬ ‭than‬ ‭typical‬ ‭supernovae.‬ ‭These‬ ‭events‬
‭constitute approximately 2% of the dataset.‬

‭SN-Ia (Type Ia Supernovae)‬
‭Type‬‭Ia‬ ‭Supernovae‬‭(SN-Ia)‬ ‭are‬ ‭binary‬‭systems‬‭containing‬
‭a‬ ‭white‬ ‭dwarf‬ ‭star.‬ ‭Known‬ ‭for‬ ‭their‬ ‭consistent‬ ‭peak‬
‭luminosity‬ ‭and‬ ‭lack‬ ‭of‬ ‭hydrogen‬ ‭in‬ ‭their‬ ‭spectra,‬ ‭they‬
‭represent‬ ‭over‬ ‭half‬ ‭of‬ ‭the‬ ‭dataset,‬ ‭making‬ ‭them‬‭the‬ ‭most‬
‭frequent class of transient events.‬

‭SN-II (Type II Supernovae)‬
‭Type‬ ‭II‬ ‭Supernovae‬ ‭(SN-II)‬ ‭are‬ ‭massive‬ ‭stellar‬ ‭explosions‬
‭characterized‬ ‭by‬ ‭the‬ ‭retention‬ ‭of‬ ‭hydrogen.‬ ‭These‬ ‭events,‬
‭which‬ ‭exhibit‬ ‭long‬ ‭plateaus‬ ‭in‬ ‭their‬ ‭light‬ ‭curves,‬ ‭account‬
‭for‬ ‭about‬‭one-fourth‬‭of‬ ‭the‬ ‭dataset,‬ ‭making‬‭them‬‭a‬ ‭major‬
‭class.‬

‭SNIa-91bg (Type Ia-91bg Supernovae)‬
‭These‬ ‭are‬ ‭dimmer,‬ ‭faster,‬ ‭and‬ ‭redder‬ ‭variants‬ ‭of‬ ‭Type‬ ‭Ia‬
‭Supernovae.‬ ‭Due‬‭to‬ ‭their‬ ‭shorter‬ ‭observable‬ ‭window,‬‭they‬
‭make up about 1% of the dataset.‬

‭SNIax (Type Iax Supernovae)‬
‭Type‬ ‭Iax‬ ‭Supernovae‬ ‭are‬ ‭dimmer‬ ‭and‬ ‭faster‬ ‭than‬
‭traditional‬ ‭SN-Ia‬ ‭events,‬ ‭although‬‭they‬‭are‬ ‭not‬ ‭necessarily‬
‭redder. They constitute roughly 2% of the dataset.‬

‭SNIbc (Type Ibc Supernovae)‬
‭Type‬ ‭Ibc‬ ‭Supernovae‬ ‭result‬ ‭from‬ ‭the‬ ‭explosions‬ ‭of‬ ‭stars‬
‭that‬ ‭have‬‭shed‬‭their‬‭helium‬‭and‬‭hydrogen‬‭envelopes.‬‭These‬
‭events account for approximately 6% of the sample.‬

‭TDE (Tidal Disruption Events)‬
‭Tidal‬ ‭Disruption‬‭Events‬ ‭(TDEs)‬ ‭occur‬ ‭when‬‭a‬ ‭star‬ ‭is‬‭torn‬
‭apart‬ ‭by‬‭the‬‭immense‬‭gravitational‬‭forces‬‭of‬‭a‬‭supermassive‬
‭black‬ ‭hole.‬ ‭These‬ ‭rare‬ ‭events‬ ‭make‬‭up‬‭less‬ ‭than‬‭1%‬‭of‬ ‭the‬
‭dataset.‬

‭muLens-Single (Gravitational Microlensing Events)‬
‭Gravitational‬ ‭microlensing‬ ‭events‬ ‭result‬ ‭in‬ ‭a‬ ‭temporary‬
‭increase‬ ‭in‬ ‭the‬ ‭brightness‬ ‭of‬ ‭background‬ ‭stars‬ ‭due‬‭to‬ ‭the‬
‭gravitational‬ ‭influence‬ ‭of‬ ‭a‬ ‭massive‬ ‭foreground‬ ‭object.‬
‭These‬ ‭events‬ ‭are‬ ‭uncommon,‬ ‭comprising‬ ‭less‬ ‭than‬ ‭2%‬‭of‬
‭the dataset.‬

‭Data Pre-Processing:‬
‭Before‬ ‭the‬ ‭light‬ ‭curves‬ ‭were‬ ‭input‬ ‭into‬ ‭the‬ ‭model,‬ ‭a‬

‭thorough‬ ‭pre-processing‬ ‭routine‬ ‭was‬ ‭conducted‬ ‭to‬ ‭ensure‬ ‭the‬
‭quality‬ ‭and‬ ‭reliability‬ ‭of‬ ‭the‬ ‭training‬‭data.‬ ‭Initially,‬ ‭any‬‭data‬ ‭points‬
‭exceeding‬‭seven‬‭standard‬‭deviations‬ ‭from‬‭the‬‭mean‬‭were‬‭removed‬‭to‬



‭VOL. 20 | SPRING 2025‬ ‭82‬

‭mitigate‬ ‭the‬ ‭impact‬ ‭of‬ ‭extreme‬ ‭outliers.‬ ‭Following‬ ‭this,‬ ‭sigma‬
‭clipping‬‭was‬ ‭applied‬‭for‬ ‭five‬ ‭iterative‬ ‭cycles‬ ‭to‬ ‭account‬‭for‬‭potential‬
‭shifts in the mean caused by residual outliers.‬

‭Several‬ ‭additional‬ ‭steps‬ ‭were‬ ‭implemented‬ ‭to‬ ‭address‬ ‭the‬
‭astrophysical‬‭characteristics‬‭of‬‭the‬‭dataset.‬‭For‬‭nearby‬‭galactic‬‭events,‬
‭particularly‬ ‭those‬ ‭with‬ ‭redshift‬ ‭values‬ ‭around‬ ‭0.001,‬ ‭the‬ ‭distance‬
‭modulus‬ ‭was‬‭adjusted‬‭to‬‭reflect‬‭a‬‭standard‬‭distance‬‭of‬‭approximately‬
‭10‬ ‭megaparsecs‬ ‭(Heymann,‬ ‭2012).‬ ‭This‬ ‭adjustment‬ ‭ensured‬
‭consistency‬ ‭in‬ ‭distance‬ ‭measurements‬ ‭across‬ ‭different‬ ‭events,‬
‭facilitating more accurate comparisons.‬

‭The‬‭magnitude‬‭scale‬‭was‬‭then‬‭recalibrated,‬‭with‬‭brightness‬
‭increases‬ ‭represented‬ ‭by‬ ‭smaller‬ ‭apparent‬ ‭magnitudes,‬ ‭in‬ ‭line‬ ‭with‬
‭standard‬ ‭astronomical‬ ‭observational‬ ‭practices.‬ ‭Additionally,‬ ‭to‬
‭correct‬ ‭for‬ ‭dust‬ ‭extinction‬‭effects‬ ‭in‬ ‭the‬ ‭Milky‬‭Way,‬ ‭the‬ ‭Fitzpatrick‬
‭(1999)‬ ‭extinction‬ ‭model‬ ‭was‬ ‭applied.‬ ‭This‬ ‭model,‬ ‭based‬‭on‬‭Milky‬
‭Way‬‭parameters,‬ ‭assumes‬‭an‬‭extinction‬‭law‬‭of‬‭Rv‬‭=‬‭3.1,‬‭with‬‭central‬
‭wavelengths corresponding to the six LSST filters (ugrizy).‬

‭Event‬ ‭classes‬ ‭with‬‭fewer‬‭than‬‭three‬‭instances‬‭were‬‭excluded‬
‭from‬ ‭the‬ ‭dataset‬ ‭to‬ ‭enhance‬ ‭the‬ ‭model’s‬ ‭performance‬ ‭and‬ ‭ensure‬
‭that‬ ‭statistically‬ ‭significant‬ ‭data‬ ‭were‬ ‭included‬‭in‬ ‭the‬ ‭final‬ ‭analysis.‬
‭This‬ ‭pre-processing‬ ‭phase‬ ‭was‬ ‭essential‬ ‭for‬ ‭preparing‬ ‭the‬ ‭dataset,‬
‭ensuring‬ ‭that‬ ‭it‬ ‭was‬ ‭both‬ ‭clean‬ ‭and‬ ‭representative‬ ‭of‬ ‭the‬ ‭various‬
‭transient events being classified.‬
‭__________________________________________‬

‭Figure‬ ‭1:‬ ‭These‬ ‭plots‬ ‭graph‬ ‭the‬ ‭pre-processed‬
‭lightcurves‬ ‭of‬ ‭SN‬ ‭Ia,‬ ‭AGN,‬ ‭and‬ ‭SLSN-I‬ ‭in‬ ‭terms‬ ‭of‬
‭absolute magnitude. Note: created by student researcher‬
‭__________________________________________‬

‭RNN-VAE Model Architecture‬
‭The‬ ‭model‬ ‭architecture‬ ‭employed‬ ‭in‬ ‭this‬ ‭study‬ ‭integrates‬ ‭a‬
‭Recurrent‬ ‭Neural‬ ‭Network‬ ‭Variational‬ ‭Autoencoder‬ ‭(RNN-VAE)‬
‭to‬ ‭reduce‬ ‭data‬ ‭dimensionality‬ ‭while‬ ‭retaining‬ ‭critical‬ ‭features‬ ‭of‬
‭transient‬ ‭events.‬ ‭This‬ ‭architecture‬ ‭was‬ ‭chosen‬ ‭based‬ ‭on‬ ‭previous‬
‭findings‬ ‭that‬ ‭demonstrated‬‭the‬ ‭effectiveness‬ ‭of‬ ‭feature‬ ‭extraction‬‭in‬
‭supernova‬ ‭classification‬ ‭(V.‬ ‭Villar‬ ‭et‬ ‭al.,‬ ‭2019).‬ ‭The‬ ‭RNN-VAE‬
‭model‬ ‭combines‬‭both‬‭RNN‬‭and‬‭VAE‬‭components,‬‭providing‬‭a‬‭dual‬
‭advantage:‬ ‭capturing‬ ‭temporal‬ ‭dependencies‬ ‭in‬ ‭the‬ ‭data‬ ‭while‬
‭generating a meaningful latent space representation.‬

‭The‬ ‭RNN-VAE‬ ‭comprises‬ ‭two‬ ‭main‬ ‭components:‬ ‭the‬
‭encoder‬ ‭and‬ ‭the‬ ‭decoder‬ ‭(Figure‬ ‭2).‬ ‭The‬ ‭encoder‬ ‭processes‬ ‭light‬
‭curves,‬ ‭generating‬ ‭parameters‬ ‭that‬ ‭define‬ ‭the‬ ‭data’s‬ ‭latent‬ ‭space‬
‭representation.‬

‭Meanwhile,‬ ‭the‬ ‭decoder‬ ‭reconstructs‬ ‭the‬ ‭light‬ ‭curves‬‭from‬
‭this‬ ‭compressed‬ ‭representation,‬ ‭reducing‬ ‭the‬ ‭feature‬ ‭set‬ ‭while‬
‭maintaining vital information.‬

‭__________________________________________‬

‭Figure‬‭2:‬ ‭This‬‭diagram‬‭visually‬‭represents‬‭the‬‭structure‬
‭of the RNN-VAE. Note: created by student researcher.‬
‭__________________________________________‬

‭Encoder:‬
‭The‬ ‭encoder‬ ‭compresses‬ ‭the‬ ‭input‬ ‭light‬ ‭curves‬ ‭into‬ ‭a‬ ‭Gaussian‬
‭distribution. It operates in three stages:‬

‭1.‬ ‭Gated‬ ‭Recurrent‬ ‭Unit‬ ‭(GRU):‬ ‭The‬ ‭input‬ ‭data‬ ‭passes‬
‭through‬ ‭a‬ ‭GRU,‬ ‭a‬ ‭type‬ ‭of‬ ‭recurrent‬ ‭neural‬ ‭network‬‭that‬
‭leverages‬ ‭sigmoid‬‭and‬‭hyperbolic‬ ‭tangent‬ ‭(tanh)‬‭activation‬
‭functions‬ ‭to‬ ‭transform‬ ‭the‬ ‭input‬ ‭into‬ ‭latent‬ ‭outputs.‬
‭These‬ ‭activation‬ ‭functions‬ ‭help‬ ‭regulate‬ ‭the‬ ‭information‬
‭flow, deciding how much to retain from previous steps.‬

‭2.‬ ‭Fully‬ ‭Connected‬‭Layers:‬‭Two‬‭fully‬‭connected‬‭layers‬‭follow,‬
‭applying‬ ‭linear‬ ‭and‬ ‭non-linear‬ ‭transformations‬ ‭to‬ ‭learn‬
‭complex relationships between features.‬

‭3.‬ ‭Latent‬ ‭Space‬ ‭Representation:‬ ‭The‬ ‭final‬ ‭output‬ ‭of‬ ‭the‬
‭encoder‬ ‭comprises‬ ‭the‬ ‭mean,‬ ‭standard‬ ‭deviation,‬ ‭and‬
‭Gaussian‬ ‭distribution‬ ‭parameters‬ ‭that‬ ‭define‬ ‭the‬ ‭latent‬
‭space.‬

‭Decoder:‬
‭The‬ ‭decoder‬ ‭reverses‬ ‭the‬ ‭encoding‬ ‭process,‬ ‭reconstructing‬ ‭light‬
‭curves‬ ‭from‬ ‭the‬ ‭reduced‬ ‭latent‬ ‭space‬ ‭representation.‬ ‭It‬ ‭uses‬
‭additional‬ ‭GRUs‬‭and‬‭fully‬ ‭connected‬‭layers‬ ‭to‬ ‭map‬‭the‬‭compressed‬
‭data‬ ‭back‬‭to‬‭its‬‭original‬‭form.‬‭The‬‭decoder’s‬‭output‬‭sequence‬‭retains‬
‭only‬ ‭the‬ ‭most‬ ‭relevant‬ ‭features,‬ ‭optimized‬ ‭to‬ ‭include‬ ‭the‬ ‭six‬ ‭most‬
‭significant features necessary for classification .‬

‭Feature Selection and Optimization:‬
‭The‬ ‭decision‬ ‭to‬ ‭limit‬ ‭the‬ ‭number‬ ‭of‬ ‭features‬ ‭to‬ ‭six‬ ‭was‬ ‭based‬ ‭on‬
‭performance‬ ‭trials‬ ‭aimed‬ ‭at‬ ‭balancing‬ ‭model‬ ‭complexity‬ ‭and‬
‭classification‬ ‭accuracy.‬ ‭These‬ ‭trials‬ ‭tested‬ ‭various‬ ‭feature‬ ‭counts,‬
‭ranging‬ ‭from‬ ‭three‬ ‭to‬ ‭twelve,‬ ‭evaluating‬ ‭both‬ ‭the‬ ‭accuracy‬ ‭of‬ ‭the‬
‭final‬ ‭classifier‬ ‭and‬ ‭the‬ ‭training/validation‬ ‭loss‬ ‭of‬ ‭the‬ ‭RNN-VAE‬
‭itself.‬ ‭Results‬ ‭indicated‬‭that‬ ‭fewer‬ ‭than‬‭six‬ ‭features‬ ‭led‬‭to‬ ‭a‬ ‭drop‬‭in‬
‭accuracy‬‭due‬‭to‬‭the‬‭loss‬‭of‬‭essential‬‭information,‬‭while‬‭more‬‭than‬‭six‬
‭features‬ ‭resulted‬ ‭in‬ ‭diminishing‬ ‭returns‬ ‭and‬ ‭increased‬ ‭complexity,‬
‭causing‬ ‭overfitting.‬ ‭Six‬ ‭features‬ ‭were‬ ‭thus‬ ‭selected‬ ‭as‬ ‭the‬ ‭optimal‬
‭number for maintaining detail while ensuring model efficiency.‬

‭__________________________________________‬
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‭Table‬ ‭1:‬ ‭This‬ ‭table‬ ‭of‬ ‭values‬ ‭compares‬ ‭the‬ ‭number‬ ‭of‬
‭features‬‭to‬‭the‬‭overall‬‭model’s‬‭accuracy,‬‭demonstrating‬‭6‬
‭features‬‭as‬‭the‬‭most‬‭accurate‬‭and‬‭efficient‬‭number.‬‭Note:‬
‭created by student researcher.‬
‭__________________________________________‬

‭How GRU Works in RNN-VAE:‬
‭The‬ ‭Gated‬ ‭Recurrent‬ ‭Unit‬ ‭(GRU)‬ ‭is‬ ‭a‬ ‭critical‬ ‭component‬ ‭of‬ ‭the‬
‭RNN-VAE‬ ‭architecture,‬ ‭designed‬ ‭to‬ ‭efficiently‬ ‭process‬ ‭sequential‬
‭data,‬ ‭such‬ ‭as‬ ‭the‬ ‭light‬ ‭curves‬ ‭of‬ ‭transient‬ ‭events.‬ ‭It‬ ‭is‬ ‭a‬ ‭type‬ ‭of‬
‭recurrent‬ ‭neural‬ ‭network‬ ‭that‬ ‭optimizes‬ ‭the‬ ‭handling‬ ‭of‬ ‭temporal‬
‭dependencies‬ ‭while‬ ‭minimizing‬ ‭computational‬ ‭complexity.‬ ‭Unlike‬
‭traditional‬ ‭Recurrent‬ ‭Neural‬ ‭Networks‬ ‭(RNNs),‬ ‭GRUs‬ ‭utilize‬
‭gating‬‭mechanisms‬‭to‬ ‭control‬‭the‬‭flow‬‭of‬‭information,‬‭making‬‭them‬
‭particularly‬ ‭suited‬ ‭for‬ ‭time-series‬ ‭data‬ ‭with‬ ‭irregular‬ ‭time‬ ‭steps‬ ‭or‬
‭missing values—common in astronomical datasets.‬

‭The‬‭GRU’s‬ ‭structure‬ ‭(Figure‬ ‭3)‬ ‭is‬ ‭simpler‬‭than‬‭that‬‭of‬‭the‬
‭Long‬ ‭Short-Term‬ ‭Memory‬ ‭(LSTM)‬ ‭units‬ ‭but‬ ‭retains‬ ‭similar‬
‭effectiveness‬ ‭in‬ ‭sequence‬ ‭learning.‬ ‭It‬ ‭comprises‬ ‭two‬ ‭primary‬
‭gates—an‬ ‭update‬ ‭gate‬ ‭and‬ ‭a‬ ‭reset‬ ‭gate—that‬ ‭regulate‬ ‭the‬ ‭flow‬ ‭of‬
‭information through the network:‬
‭__________________________________________‬

‭Figure‬‭3:‬ ‭This‬‭diagram‬‭visually‬‭represents‬‭the‬‭structure‬
‭of a GRU. Note: created by student researcher.‬
‭__________________________________________‬

‭Update Gate:‬
‭●‬ ‭The‬ ‭update‬ ‭gate‬ ‭determines‬ ‭how‬ ‭much‬ ‭of‬ ‭the‬ ‭previous‬

‭information‬ ‭needs‬ ‭to‬ ‭be‬ ‭carried‬ ‭forward‬ ‭to‬ ‭the‬ ‭next‬ ‭time‬
‭step.‬

‭●‬ ‭It‬‭combines‬‭the‬‭roles‬‭of‬‭the‬‭LSTM’s‬‭forget‬‭and‬‭input‬‭gates,‬
‭effectively‬ ‭deciding‬‭which‬‭information‬‭to‬‭retain‬‭and‬‭which‬
‭to discard.‬

‭●‬ ‭Mathematically, the update gate (ztz_tzt) is calculated as:‬
‭𝑧‬

‭𝑡‬
= σ(‭𝑊‬

‭𝑧‬
• [‭ℎ‬

‭𝑡‬−‭1‬
, ‭𝑥‬

‭𝑡‬
])

‭where‬ ‭𝑊‬‭𝑧‬ ‭is‬ ‭the‬ ‭weight‬ ‭matrix,‬ ‭is‬ ‭the‬ ‭hidden‬ ‭state‬‭ℎ‬
‭𝑡‬−‭1‬

‭from the previous time step, and 𝑥‬‭t‬ ‭is the current‬‭input.‬

‭Reset Gate:‬
‭●‬ ‭The‬ ‭reset‬ ‭gate‬ ‭decides‬ ‭how‬‭much‬‭of‬ ‭the‬ ‭past‬ ‭information‬

‭should be forgotten at the current time step.‬
‭●‬ ‭This‬ ‭allows‬‭the‬ ‭GRU‬‭to‬‭focus‬‭more‬‭on‬‭recent‬‭information‬

‭when‬ ‭making‬ ‭predictions,‬ ‭which‬ ‭is‬ ‭crucial‬ ‭for‬
‭reconstructing light curves in the decoder.‬

‭●‬ ‭The reset gate (𝑟‬‭𝑡‬‭)is computed as:‬
‭𝑟‬

‭𝑡‬
= σ(‭𝑊‬

‭𝑟‬
• [‭ℎ‬

‭𝑡‬−‭1‬
, ‭𝑥‬

‭𝑡‬
])

‭Current Memory Content:‬
‭After‬ ‭determining‬ ‭the‬ ‭update‬ ‭and‬ ‭reset‬ ‭gates,‬ ‭the‬ ‭GRU‬‭computes‬
‭the‬ ‭candidate‬ ‭hidden‬‭state‬‭(‬ ‭),‬‭which‬‭incorporates‬‭both‬‭the‬‭current‬‭ℎ‬

‭𝑡‬
‭input and the previous hidden state,‬
‭𝑡 modulated by the reset gate:‬‭ℎ‬

‭𝑡‬
= ‭𝑡𝑎𝑛ℎ‬(‭𝑊‬‭ ‬ • ‭ ‬[‭𝑟‬

‭𝑡‬
* ‭ ‬‭ℎ‬

‭𝑡‬−‭1‬
, ‭𝑥‬

‭𝑡‬
])

‭Here,‬ ‭the‬ ‭reset‬ ‭gate‬ ‭(𝑟‬‭t‬‭)‬ ‭controls‬ ‭how‬‭much‬‭of‬ ‭the‬‭past‬‭information‬
‭influences the current candidate hidden state.‬

‭Hidden State Update:‬
‭The‬ ‭final‬ ‭hidden‬ ‭state‬ ‭is‬ ‭a‬ ‭linear‬ ‭interpolation‬ ‭between‬ ‭the‬‭ℎ‬

‭𝑡‬
‭previous‬ ‭hidden‬‭state‬ ‭and‬‭the‬‭candidate‬‭hidden‬‭state,‬‭determined‬‭by‬
‭the update gate:‬

‭ℎ‬
‭𝑡‬

= (‭1‬ − ‭𝑧‬) * ‭ℎ‬
‭𝑡‬−‭1‬

* ‭ℎ‬
‭𝑡‬

‭Role of GRU in RNN-VAE for Transient Classification:‬
‭The‬‭GRU’s‬ ‭gating‬‭mechanisms‬‭allow‬‭the‬ ‭model‬‭to‬‭selectively‬‭retain‬
‭or‬ ‭discard‬‭information‬‭at‬‭each‬‭time‬‭step,‬‭making‬‭it‬‭highly‬‭effective‬‭in‬
‭modeling‬ ‭sequential‬ ‭dependencies‬ ‭in‬ ‭light‬ ‭curves.‬ ‭In‬‭the‬ ‭context‬ ‭of‬
‭transient‬ ‭event‬ ‭classification,‬ ‭GRUs‬ ‭help‬ ‭capture‬ ‭key‬ ‭temporal‬
‭patterns‬ ‭in‬ ‭the‬ ‭evolving‬ ‭brightness‬ ‭of‬ ‭different‬ ‭astronomical‬
‭phenomena.‬ ‭This‬ ‭capability‬ ‭is‬‭essential‬‭for‬‭accurately‬‭reconstructing‬
‭light‬ ‭curves‬ ‭and‬ ‭extracting‬ ‭meaningful‬ ‭features‬ ‭for‬ ‭subsequent‬
‭classification.‬

‭The‬ ‭GRU’s‬ ‭simplicity‬ ‭and‬ ‭efficiency,‬ ‭compared‬ ‭to‬ ‭more‬
‭complex‬ ‭units‬ ‭like‬ ‭LSTMs,‬ ‭also‬ ‭make‬ ‭it‬ ‭faster‬ ‭to‬ ‭train‬ ‭while‬
‭maintaining‬ ‭strong‬ ‭performance.‬ ‭This‬ ‭balance‬ ‭between‬
‭computational‬ ‭efficiency‬ ‭and‬ ‭temporal‬ ‭accuracy‬ ‭is‬ ‭critical‬ ‭for‬
‭handling‬ ‭the‬ ‭large,‬ ‭real-time‬ ‭datasets‬ ‭generated‬ ‭by‬ ‭astronomical‬
‭surveys like the LSST.‬

‭Training and Optimization‬
‭The‬ ‭training‬ ‭of‬ ‭the‬ ‭Recurrent‬ ‭Neural‬ ‭Network‬ ‭Variational‬
‭Autoencoder‬ ‭(RNN-VAE)‬ ‭was‬ ‭carried‬ ‭out‬ ‭in‬ ‭distinct‬ ‭phases:‬
‭initialization, the training loop, optimization, and validation.‬
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‭Initialization Phase:‬
‭Initially,‬ ‭the‬ ‭model’s‬ ‭parameters‬ ‭were‬ ‭randomly‬ ‭assigned‬‭to‬ ‭ensure‬
‭reproducibility‬ ‭across‬ ‭trials.‬ ‭Random‬ ‭initialization‬ ‭is‬ ‭crucial‬ ‭for‬
‭establishing‬ ‭a‬ ‭baseline‬ ‭and‬ ‭enabling‬ ‭consistent‬ ‭performance‬
‭comparisons (Kingma & Ba, 2015).‬

‭Training Loop:‬
‭The‬ ‭model‬ ‭was‬ ‭trained‬ ‭over‬ ‭multiple‬ ‭epochs,‬ ‭with‬ ‭each‬ ‭epoch‬
‭comprising‬ ‭batches‬ ‭of‬ ‭data,‬ ‭allowing‬ ‭efficient‬ ‭processing‬ ‭of‬ ‭the‬
‭dataset‬ ‭(Paszke‬‭et‬ ‭al.,‬ ‭2019).‬ ‭The‬‭training‬‭continued‬‭until‬‭either‬‭the‬
‭entire‬ ‭dataset‬ ‭was‬ ‭processed‬ ‭or‬ ‭improvements‬ ‭in‬ ‭performance‬
‭stagnated.‬ ‭Each‬‭epoch‬‭involved‬‭a‬ ‭forward‬‭pass‬ ‭through‬‭the‬ ‭encoder‬
‭and‬‭decoder,‬ ‭followed‬‭by‬‭a‬ ‭backward‬‭pass‬‭to‬‭compute‬‭gradients‬‭and‬
‭update model parameters.‬

‭During the forward pass:‬
‭●‬ ‭Encoder:‬ ‭The‬ ‭encoder‬ ‭compresses‬ ‭input‬ ‭light‬ ‭curves‬ ‭into‬

‭latent space representations (Rezende et al., 2014).‬
‭●‬ ‭Decoder:‬ ‭The‬ ‭decoder‬ ‭reconstructs‬ ‭the‬ ‭light‬ ‭curves‬ ‭from‬

‭this latent space.‬
‭After‬ ‭the‬ ‭forward‬ ‭pass,‬ ‭the‬ ‭backward‬‭pass‬ ‭computed‬‭gradients‬ ‭and‬
‭loss‬ ‭values,‬ ‭which‬‭were‬‭used‬‭to‬‭refine‬‭model‬‭parameters‬‭and‬‭improve‬
‭accuracy.‬

‭Optimization Strategy:‬
‭The‬ ‭optimization‬ ‭process‬ ‭employed‬ ‭the‬ ‭Adaptive‬ ‭Moment‬
‭Estimation‬ ‭(Adam)‬ ‭optimizer,‬ ‭selected‬ ‭for‬ ‭its‬ ‭ability‬ ‭to‬ ‭adjust‬
‭learning‬‭rates‬ ‭dynamically‬ ‭based‬‭on‬‭the‬‭first‬‭and‬‭second‬‭moments‬‭of‬
‭the‬‭gradients‬‭(Kingma‬‭&‬‭Ba,‬‭2015).‬‭Adam‬‭is‬‭particularly‬‭effective‬‭for‬
‭managing‬ ‭sparse‬ ‭gradients‬ ‭in‬ ‭deep‬ ‭learning‬ ‭models,‬ ‭making‬ ‭it‬
‭suitable for sequential data processing in this context.‬
‭The optimization process involved:‬

‭1.‬ ‭Gradient‬‭Calculation:‬‭Gradients‬‭of‬‭the‬‭loss‬‭were‬‭computed‬
‭with respect to model parameters.‬

‭2.‬ ‭Parameter‬ ‭Updates:‬ ‭Parameters‬ ‭were‬ ‭iteratively‬ ‭updated‬‭to‬
‭minimize the loss, facilitating convergence.‬

‭Composite Loss Function:‬
‭To‬ ‭maximize‬ ‭model‬ ‭performance,‬ ‭a‬ ‭composite‬ ‭loss‬ ‭function‬ ‭was‬
‭utilized:‬

‭1.‬ ‭Mean‬ ‭Squared‬ ‭Error‬ ‭(MSE):‬ ‭Measures‬ ‭the‬ ‭reconstruction‬
‭error‬ ‭between‬ ‭the‬ ‭original‬ ‭and‬‭reconstructed‬‭light‬ ‭curves,‬
‭ensuring critical features are retained (Bengio et al., 2013).‬

‭𝑀𝑆𝐸‬ = ‭1‬
‭𝑛‬ ∑ (‭𝑦‬ − ‭𝑦‬

‭1‬
)‭2‬

‭2.‬ ‭Kullback-Leibler‬ ‭(KL)‬ ‭Divergence:‬ ‭Measures‬ ‭the‬
‭divergence‬ ‭between‬‭the‬ ‭latent‬ ‭distribution‬‭and‬‭a‬ ‭Gaussian‬
‭prior,‬ ‭guiding‬ ‭the‬ ‭latent‬ ‭space‬ ‭to‬ ‭conform‬ ‭to‬ ‭a‬ ‭normal‬
‭distribution (Kingma & Welling, 2013).‬

‭𝐾𝐿‬(‭𝑃‬‭||‬‭𝑄‬) = ∑ ‭𝑃‬(‭𝑋‬) × ‭𝑙𝑜𝑔‬ ‭𝑃‬(‭𝑋‬)
‭𝑄‬(‭𝑋‬)

‭The‬ ‭combination‬ ‭of‬ ‭MSE‬ ‭and‬ ‭KL‬ ‭Divergence‬ ‭aimed‬ ‭to‬ ‭maximize‬
‭the‬ ‭Evidence‬ ‭Lower‬ ‭Bound‬ ‭(ELBO),‬ ‭a‬ ‭standard‬ ‭objective‬ ‭in‬ ‭VAEs‬
‭that‬ ‭improves‬ ‭both‬ ‭reconstruction‬ ‭quality‬ ‭and‬ ‭the‬ ‭latent‬ ‭space‬
‭distribution (Rezende et al., 2014).‬

‭Hyperparameter Tuning for GRU:‬
‭Several‬ ‭hyperparameters‬ ‭were‬ ‭adjusted‬ ‭throughout‬ ‭training‬ ‭to‬
‭optimize model performance:‬

‭●‬ ‭Number‬ ‭of‬ ‭Layers:‬ ‭The‬ ‭GRU‬ ‭layers‬ ‭were‬ ‭set‬ ‭to‬ ‭2,‬
‭balancing‬‭complexity‬‭and‬‭computational‬‭efficiency‬‭(Cho‬‭et‬
‭al., 2014).‬

‭●‬ ‭Hidden‬ ‭Units:‬ ‭64‬ ‭hidden‬ ‭units‬ ‭per‬ ‭GRU‬ ‭layer‬ ‭were‬
‭chosen‬ ‭based‬ ‭on‬ ‭validation‬ ‭accuracy,‬ ‭ensuring‬ ‭sufficient‬
‭capacity to capture light curve features.‬

‭●‬ ‭Learning‬‭Rate:‬‭A‬‭starting‬‭learning‬‭rate‬‭of‬‭0.001‬‭was‬‭used,‬
‭with‬‭gradual‬ ‭decay‬‭to‬‭prevent‬‭overshooting‬‭minima‬‭during‬
‭optimization.‬

‭●‬ ‭Batch‬‭Size:‬ ‭A‬‭batch‬‭size‬ ‭of‬ ‭128‬‭was‬ ‭found‬‭to‬ ‭be‬‭optimal,‬
‭offering‬ ‭a‬ ‭good‬ ‭balance‬ ‭between‬ ‭convergence‬ ‭speed‬ ‭and‬
‭stability (Paszke et al., 2019).‬

‭Validation and Early Stopping:‬
‭Validation‬ ‭was‬ ‭performed‬ ‭after‬ ‭each‬ ‭epoch,‬ ‭with‬ ‭validation‬ ‭loss‬
‭serving‬ ‭as‬ ‭the‬ ‭primary‬ ‭performance‬ ‭metric.‬ ‭Early‬ ‭stopping‬ ‭was‬
‭implemented‬ ‭to‬ ‭prevent‬ ‭overfitting,‬ ‭terminating‬‭training‬‭when‬‭the‬
‭validation‬ ‭loss‬ ‭began‬ ‭to‬ ‭increase‬ ‭while‬ ‭the‬ ‭training‬ ‭loss‬ ‭remained‬
‭stable‬ ‭(Prechelt,‬ ‭1998).‬‭This‬‭comprehensive‬‭training‬‭process‬‭enabled‬
‭the‬ ‭model‬‭to‬‭effectively‬‭extract‬‭meaningful‬‭features‬‭from‬‭light‬‭curves‬
‭while‬ ‭maintaining‬ ‭robustness‬ ‭in‬ ‭classification‬ ‭tasks‬ ‭(Villar‬ ‭et‬ ‭al.,‬
‭2019).‬

‭Gradient Boosting Classifier‬
‭A‬ ‭Gradient‬ ‭Boosting‬ ‭Classifier‬ ‭is‬ ‭an‬ ‭ensemble‬ ‭machine‬ ‭learning‬
‭model‬ ‭that‬ ‭iteratively‬ ‭trains‬ ‭multiple‬ ‭sequential‬ ‭models‬ ‭to‬ ‭mitigate‬
‭the‬ ‭errors‬ ‭of‬ ‭each‬ ‭preceding‬ ‭layer.‬ ‭The‬ ‭classifier‬ ‭utilizes‬ ‭a‬ ‭loss‬
‭function‬‭known‬‭as‬ ‭deviance‬‭loss,‬ ‭which‬‭is‬‭derived‬‭from‬‭the‬‭negative‬
‭log-likelihood‬ ‭of‬ ‭the‬ ‭multinomial‬ ‭distribution.‬ ‭Deviance‬ ‭loss‬
‭imposes‬ ‭significant‬ ‭penalties‬ ‭for‬ ‭misclassifications,‬ ‭making‬ ‭it‬
‭particularly‬ ‭effective‬ ‭for‬ ‭handling‬ ‭heavily‬ ‭imbalanced‬ ‭datasets,‬ ‭as‬
‭illustrated in the following equation:‬

‭𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒‬‭ ‬‭𝐿𝑜𝑠𝑠‬‭ ‬ = ‭ ‬‭2‬∑[‭𝑦‬
‭1‬
(‭𝑙𝑜𝑔‬)

‭𝑦‬
‭1‬

µ
− (‭𝑦‬

‭1‬
− µ)]

‭In‬ ‭addition‬ ‭to‬ ‭employing‬ ‭deviance‬ ‭loss,‬ ‭the‬ ‭Gradient‬
‭Boosting‬ ‭Classifier‬ ‭incorporates‬ ‭gradient‬ ‭calculations‬ ‭to‬ ‭minimize‬
‭the‬ ‭loss‬ ‭concerning‬‭the‬ ‭outputs‬ ‭of‬ ‭the‬‭preceding‬‭learner,‬‭such‬‭as‬‭the‬
‭RNN-VAE‬ ‭utilized‬ ‭in‬ ‭this‬ ‭study.‬ ‭This‬ ‭methodology‬ ‭is‬ ‭akin‬ ‭to‬ ‭the‬
‭approaches‬ ‭taken‬‭by‬‭previous‬‭researchers‬‭who‬‭employed‬‭an‬‭Extreme‬
‭Boosting Classifier to classify supernovae‬
‭based on extracted features (M¨oller et al. 2016).‬

‭The‬‭base‬ ‭classifier‬ ‭within‬‭this‬ ‭framework‬‭is‬‭a‬‭decision‬‭tree,‬
‭often‬‭referred‬‭to‬ ‭as‬ ‭a‬ ‭”weak‬‭learner.”‬ ‭However,‬‭when‬‭combined‬‭in‬‭a‬
‭Gradient‬ ‭Boosting‬ ‭Classifier,‬ ‭these‬ ‭decision‬ ‭trees‬ ‭form‬ ‭a‬ ‭much‬
‭stronger‬ ‭predictive‬ ‭model.‬ ‭Gradient‬ ‭Boosting‬‭Classifiers‬ ‭are‬ ‭known‬
‭for‬ ‭their‬ ‭high‬ ‭predictive‬ ‭capabilities‬ ‭and‬ ‭superior‬ ‭performance‬ ‭in‬
‭handling‬ ‭heterogeneous‬ ‭data.‬ ‭Given‬ ‭the‬ ‭complex‬ ‭nature‬ ‭of‬ ‭the‬
‭dataset‬ ‭in‬ ‭this‬ ‭study,‬ ‭the‬ ‭Gradient‬ ‭Boosting‬‭Classifier‬‭demonstrated‬
‭improved‬ ‭performance‬ ‭compared‬ ‭to‬ ‭alternative‬ ‭models,‬ ‭such‬ ‭as‬
‭Random Forest and Support Vector Machines.‬

‭The‬‭model‬ ‭underwent‬‭an‬‭iterative‬‭fine-tuning‬‭process‬‭over‬
‭105‬ ‭cycles,‬ ‭during‬ ‭which‬ ‭key‬ ‭hyperparameters‬ ‭were‬ ‭carefully‬
‭adjusted‬ ‭to‬ ‭optimize‬ ‭performance.‬ ‭These‬ ‭parameters‬ ‭included‬ ‭the‬
‭number‬‭of‬ ‭estimators,‬ ‭maximum‬‭tree‬‭depth,‬‭minimum‬‭sample‬‭split,‬
‭and‬ ‭purity‬ ‭decrease‬ ‭threshold.‬ ‭By‬ ‭methodically‬ ‭varying‬ ‭these‬
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‭settings,‬ ‭the‬ ‭process‬ ‭effectively‬ ‭mimicked‬‭a‬ ‭systematic‬ ‭grid‬ ‭search,‬ ‭a‬
‭common‬ ‭technique‬ ‭used‬ ‭in‬ ‭machine‬ ‭learning‬ ‭to‬ ‭identify‬ ‭the‬ ‭best‬
‭parameter combinations for enhancing model accuracy.‬

‭●‬ ‭Number‬ ‭of‬‭Estimators:‬‭This‬ ‭parameter‬ ‭determines‬ ‭how‬
‭many‬ ‭individual‬ ‭decision‬ ‭trees‬ ‭are‬ ‭used‬ ‭in‬ ‭the‬ ‭Gradient‬
‭Boosting‬ ‭Classifier.‬ ‭Increasing‬ ‭the‬ ‭number‬ ‭of‬ ‭estimators‬
‭typically‬ ‭improves‬ ‭performance‬ ‭but‬ ‭also‬ ‭raises‬ ‭the‬ ‭risk‬ ‭of‬
‭overfitting.‬ ‭In‬‭my‬‭fine-tuning,‬ ‭I‬ ‭explored‬‭a‬ ‭range‬‭of‬ ‭values‬
‭to‬ ‭find‬ ‭an‬ ‭optimal‬ ‭balance‬ ‭that‬ ‭maximized‬ ‭classification‬
‭accuracy‬ ‭without‬ ‭compromising‬ ‭the‬ ‭model’s‬
‭generalizability.‬

‭●‬ ‭Maximum‬ ‭Tree‬ ‭Depth:‬ ‭The‬ ‭maximum‬ ‭depth‬ ‭of‬ ‭each‬
‭decision‬ ‭tree‬ ‭controls‬ ‭the‬ ‭complexity‬ ‭of‬ ‭the‬ ‭model.‬ ‭A‬
‭deeper‬ ‭tree‬ ‭can‬‭capture‬ ‭more‬‭intricate‬ ‭patterns‬‭in‬‭the‬‭data,‬
‭but‬ ‭it‬ ‭may‬ ‭also‬ ‭lead‬ ‭to‬ ‭overfitting.‬ ‭Through‬ ‭the‬ ‭tuning‬
‭process,‬ ‭I‬ ‭tested‬ ‭various‬ ‭depths‬ ‭to‬ ‭ensure‬ ‭that‬ ‭the‬ ‭model‬
‭could‬ ‭adequately‬ ‭learn‬ ‭the‬ ‭underlying‬ ‭structures‬ ‭of‬ ‭the‬
‭light curves while maintaining robustness against noise.‬

‭●‬ ‭Minimum‬ ‭Sample‬ ‭Split:‬ ‭This‬ ‭parameter‬ ‭specifies‬ ‭the‬
‭minimum‬‭number‬‭of‬ ‭samples‬ ‭required‬‭to‬ ‭split‬ ‭an‬‭internal‬
‭node‬ ‭in‬ ‭the‬ ‭decision‬ ‭tree.‬ ‭By‬‭adjusting‬‭this‬ ‭value,‬ ‭I‬ ‭could‬
‭control‬ ‭how‬‭sensitive‬ ‭the‬ ‭model‬ ‭was‬ ‭to‬ ‭fluctuations‬ ‭in‬‭the‬
‭data.‬ ‭Lower‬ ‭values‬ ‭allowed‬‭for‬ ‭more‬‭splits‬ ‭and‬‭potentially‬
‭more‬ ‭detailed‬ ‭decision‬ ‭boundaries,‬ ‭while‬ ‭higher‬ ‭values‬
‭enforced more generalization.‬

‭●‬ ‭Purity‬ ‭Decrease‬ ‭Threshold:‬ ‭This‬ ‭threshold‬ ‭determines‬
‭the‬ ‭minimum‬ ‭reduction‬ ‭in‬ ‭impurity‬ ‭required‬ ‭to‬ ‭create‬ ‭a‬
‭split‬ ‭in‬ ‭the‬ ‭decision‬ ‭tree.‬ ‭Fine-tuning‬ ‭this‬ ‭parameter‬
‭enabled‬ ‭me‬ ‭to‬ ‭balance‬ ‭between‬ ‭creating‬ ‭too‬ ‭many‬ ‭splits‬
‭(which‬‭could‬‭lead‬‭to‬‭overfitting)‬‭and‬‭too‬‭few‬‭(which‬‭could‬
‭result in underfitting).‬

‭Throughout‬ ‭the‬ ‭105‬ ‭cycles,‬ ‭each‬ ‭adjustment‬ ‭was‬
‭monitored‬ ‭for‬ ‭its‬ ‭impact‬ ‭on‬ ‭classification‬ ‭performance‬ ‭across‬ ‭a‬
‭variety‬ ‭of‬ ‭transient‬ ‭event‬ ‭classes.‬ ‭The‬‭iterative‬‭process‬‭allowed‬‭me‬‭to‬
‭systematically‬ ‭evaluate‬ ‭how‬ ‭changes‬ ‭in‬ ‭hyperparameters‬ ‭influenced‬
‭the‬ ‭model’s‬ ‭ability‬ ‭to‬ ‭accurately‬ ‭classify‬ ‭different‬ ‭types‬ ‭of‬ ‭transient‬
‭events, from supernovae to rare events‬
‭like Tidal Disruption Events (TDEs).‬

‭By‬ ‭carefully‬ ‭adjusting‬ ‭these‬ ‭parameters‬ ‭and‬‭observing‬‭the‬
‭corresponding‬ ‭performance‬ ‭metrics,‬ ‭I‬ ‭achieved‬ ‭significant‬
‭improvements‬ ‭in‬ ‭classification‬ ‭accuracy.‬ ‭The‬ ‭refined‬ ‭model‬
‭demonstrated‬ ‭enhanced‬ ‭predictive‬ ‭capabilities,‬ ‭effectively‬ ‭capturing‬
‭the‬ ‭complexities‬ ‭of‬ ‭the‬ ‭light‬ ‭curves‬ ‭associated‬ ‭with‬ ‭each‬ ‭transient‬
‭event‬‭class.‬‭This‬‭optimization‬‭process‬‭not‬‭only‬‭improved‬‭the‬‭model’s‬
‭performance‬ ‭but‬ ‭also‬ ‭provided‬ ‭valuable‬ ‭insights‬ ‭into‬ ‭the‬
‭relationships‬ ‭between‬ ‭hyper‬ ‭parameters‬ ‭and‬ ‭model‬ ‭outcomes,‬
‭informing future research and development efforts.‬

‭Results and Discussion‬
‭The‬‭RNN-VAE‬‭model,‬ ‭paired‬‭with‬‭the‬‭Gradient‬‭Boosting‬‭Classifier‬
‭(GBC),‬ ‭was‬ ‭trained‬ ‭and‬ ‭tested‬ ‭on‬ ‭the‬ ‭Photometric‬ ‭LSST‬
‭Astronomical‬ ‭Time-series‬ ‭Classification‬ ‭Challenge‬ ‭(PLAsTiCC)‬
‭dataset‬ ‭(Kessler‬ ‭et‬ ‭al.,‬‭2019).‬‭The‬‭model‬‭achieved‬‭an‬‭overall‬‭accuracy‬
‭of‬‭89%,‬‭an‬‭AUC-ROC‬‭score‬‭of‬‭0.94,‬‭and‬‭an‬‭average‬‭precision,‬‭recall,‬
‭and‬ ‭F-1‬ ‭score‬ ‭of‬ ‭0.89,‬ ‭demonstrating‬ ‭strong‬ ‭discriminative‬
‭performance across a wide range of transient classes.‬

‭Class-Specific Performance:‬
‭To‬ ‭provide‬ ‭a‬ ‭detailed‬ ‭evaluation‬ ‭of‬ ‭the‬ ‭model's‬
‭effectiveness,‬ ‭precision,‬ ‭recall,‬ ‭and‬ ‭F1-score‬ ‭were‬
‭recalculated‬ ‭for‬ ‭each‬ ‭transient‬ ‭class‬ ‭(Figure‬ ‭4).‬ ‭Given‬‭the‬
‭imbalanced‬ ‭dataset,‬ ‭these‬ ‭metrics‬ ‭offer‬ ‭more‬ ‭meaningful‬
‭insights‬ ‭than‬‭accuracy‬‭alone.‬ ‭The‬‭following‬‭analysis‬‭covers‬
‭the updated performance metrics for each class:‬

‭Active Galactic Nuclei (AGN):‬
‭The‬‭model‬ ‭achieved‬‭a‬ ‭precision‬‭of‬ ‭0.88,‬ ‭recall‬‭of‬‭0.89,‬‭and‬
‭an‬ ‭F1-score‬ ‭of‬ ‭0.88‬ ‭for‬ ‭AGN.‬ ‭Misclassifications‬ ‭were‬
‭minimal,‬ ‭indicating‬ ‭that‬ ‭the‬ ‭model‬ ‭effectively‬
‭distinguished‬ ‭AGNs‬ ‭from‬ ‭other‬ ‭classes.‬ ‭The‬ ‭use‬ ‭of‬
‭advanced‬ ‭feature‬ ‭extraction‬ ‭could‬ ‭further‬ ‭enhance‬
‭performance.‬

‭Calcium-Rich Transients (CaRTs):‬
‭The‬ ‭model‬ ‭performed‬ ‭well‬ ‭for‬ ‭CaRTs,‬ ‭achieving‬ ‭a‬
‭precision‬ ‭of‬ ‭0.93,‬ ‭recall‬ ‭of‬ ‭0.94,‬ ‭and‬ ‭an‬ ‭F1-score‬ ‭of‬ ‭0.93.‬
‭This‬ ‭strong‬ ‭performance‬ ‭suggests‬ ‭that‬ ‭the‬ ‭model‬
‭successfully‬ ‭captured‬‭the‬ ‭distinct‬ ‭characteristics‬ ‭of‬‭CaRTs,‬
‭despite their limited representation in the dataset.‬

‭Eclipsing Binaries (EBs):‬
‭The‬ ‭model‬ ‭accurately‬ ‭classified‬‭EBs,‬ ‭achieving‬‭a‬ ‭precision‬
‭of‬ ‭0.96,‬‭recall‬‭of‬‭0.94,‬‭and‬‭an‬‭F1-score‬‭of‬‭0.95.‬‭The‬‭model’s‬
‭effectiveness‬ ‭in‬ ‭capturing‬ ‭the‬ ‭periodic‬ ‭patterns‬ ‭typical‬ ‭of‬
‭EBs indicates its robustness in handling cyclic events.‬

‭Intermediate-Luminosity Optical Transients (ILOTs):‬
‭The‬ ‭model‬ ‭demonstrated‬ ‭high‬ ‭performance‬ ‭for‬ ‭ILOTs,‬
‭achieving‬‭a‬‭precision‬‭of‬‭0.96,‬‭recall‬‭of‬‭0.95,‬‭and‬‭an‬‭F1-score‬
‭of‬ ‭0.95.‬ ‭Misclassifications‬ ‭were‬ ‭minimal,‬ ‭suggesting‬ ‭that‬
‭the‬ ‭model‬ ‭captured‬ ‭the‬ ‭distinct‬ ‭characteristics‬ ‭of‬ ‭ILOTs‬
‭effectively.‬

‭M-Dwarf Flares:‬
‭The‬ ‭model‬ ‭exhibited‬ ‭strong‬ ‭performance‬ ‭in‬ ‭classifying‬
‭M-Dwarf‬ ‭Flares,‬ ‭with‬ ‭precision,‬ ‭recall,‬ ‭and‬‭F1-score‬ ‭all‬ ‭at‬
‭0.96.‬ ‭The‬ ‭model’s‬ ‭high‬ ‭performance‬ ‭is‬ ‭attributed‬ ‭to‬ ‭the‬
‭short-lived‬ ‭flaring‬ ‭behavior‬ ‭of‬ ‭M-Dwarfs,‬ ‭which‬ ‭is‬ ‭easily‬
‭identifiable in photometric data.‬

‭Mira Variables:‬
‭The‬‭model‬ ‭showed‬‭strong‬‭performance‬‭for‬‭Mira‬‭Variables,‬
‭achieving‬‭precision,‬ ‭recall,‬ ‭and‬‭F1-score‬ ‭of‬ ‭0.95‬‭each.‬‭This‬
‭performance‬ ‭highlights‬ ‭the‬ ‭model’s‬ ‭ability‬ ‭to‬ ‭effectively‬
‭capture the distinct characteristics of Mira Variables.‬

‭Pair-Instability Supernovae (PISN):‬
‭The‬ ‭model‬ ‭exhibited‬ ‭high‬ ‭performance‬ ‭for‬ ‭PISN,‬
‭achieving‬‭precision‬‭of‬ ‭0.98,‬ ‭recall‬ ‭of‬ ‭0.99,‬ ‭and‬‭an‬‭F1-score‬
‭of‬ ‭0.98.‬ ‭The‬ ‭high‬ ‭scores‬ ‭indicate‬ ‭that‬ ‭the‬ ‭model‬
‭successfully‬ ‭differentiated‬ ‭PISN‬ ‭from‬ ‭other‬ ‭supernova‬
‭classes.‬

‭RRLyrae Variables (RRL):‬
‭The‬ ‭model‬ ‭achieved‬ ‭strong‬ ‭performance‬ ‭for‬ ‭RRLyrae‬
‭Variables,‬ ‭with‬ ‭precision,‬ ‭recall,‬ ‭and‬ ‭F1-score‬ ‭all‬ ‭at‬ ‭0.95.‬
‭The‬ ‭model's‬ ‭effectiveness‬ ‭in‬ ‭identifying‬ ‭the‬ ‭periodic‬
‭variations‬ ‭typical‬ ‭of‬ ‭RRLyrae‬‭demonstrates‬ ‭its‬ ‭robustness‬
‭in handling periodic events.‬

‭Type I Superluminous Supernovae (SLSN-I):‬
‭The‬‭model‬‭demonstrated‬‭strong‬‭performance‬‭in‬‭classifying‬
‭SLSN-I,‬ ‭achieving‬‭precision‬‭of‬ ‭0.92,‬ ‭recall‬ ‭of‬ ‭0.94,‬ ‭and‬‭an‬
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‭F1-score‬ ‭of‬ ‭0.93.‬ ‭The‬ ‭model‬ ‭effectively‬ ‭identified‬ ‭the‬
‭high-luminosity‬ ‭patterns‬ ‭characteristic‬ ‭of‬ ‭SLSN-I,‬ ‭with‬
‭occasional‬ ‭misclassifications‬ ‭due‬ ‭to‬ ‭similarities‬ ‭with‬‭other‬
‭supernova classes.‬

‭Type Ia Supernovae (SN Ia):‬
‭The‬‭model‬ ‭achieved‬‭a‬ ‭precision‬‭of‬ ‭0.68,‬ ‭recall‬‭of‬‭0.61,‬‭and‬
‭an‬ ‭F1-score‬ ‭of‬ ‭0.64‬ ‭for‬ ‭SN‬ ‭Ia.‬ ‭Misclassifications‬ ‭were‬
‭frequent‬ ‭with‬ ‭SN‬ ‭Iax‬ ‭and‬ ‭SN‬ ‭II,‬ ‭primarily‬ ‭due‬ ‭to‬
‭overlapping‬ ‭early-phase‬ ‭light‬ ‭curve‬ ‭characteristics.‬
‭Incorporating‬ ‭additional‬ ‭data‬ ‭or‬ ‭feature‬ ‭extraction‬
‭techniques could improve performance.‬

‭Type II Supernovae (SN II):‬
‭The‬ ‭model‬ ‭showed‬ ‭moderate‬ ‭performance‬ ‭for‬ ‭SN‬ ‭II,‬
‭achieving‬‭a‬‭precision‬‭of‬‭0.64,‬‭recall‬‭of‬‭0.61,‬‭and‬‭an‬‭F1-score‬
‭of‬ ‭0.62.‬ ‭Misclassifications‬ ‭primarily‬ ‭occurred‬‭with‬‭SN‬‭Ia,‬
‭indicating‬ ‭similar‬ ‭early‬ ‭brightness‬ ‭characteristics.‬ ‭Further‬
‭refinement‬ ‭in‬ ‭feature‬ ‭extraction‬ ‭could‬ ‭improve‬
‭classification accuracy.‬

‭Type Ia-91bg Supernovae (SN Ia-91bg):‬
‭The‬ ‭model‬ ‭performed‬ ‭well‬ ‭for‬ ‭SN‬ ‭Ia-91bg,‬ ‭achieving‬ ‭a‬
‭precision‬ ‭of‬ ‭0.90,‬ ‭recall‬ ‭of‬ ‭0.94,‬ ‭and‬ ‭an‬ ‭F1-score‬ ‭of‬ ‭0.92.‬
‭The‬ ‭high‬ ‭scores‬ ‭suggest‬ ‭that‬ ‭the‬ ‭model‬ ‭successfully‬
‭distinguished this subtype from other supernovae.‬

‭Type Iax Supernovae (SN Iax):‬
‭The‬ ‭model‬ ‭performed‬ ‭well‬ ‭for‬ ‭SN‬ ‭Iax,‬ ‭achieving‬ ‭a‬
‭precision‬ ‭of‬ ‭0.85,‬ ‭recall‬ ‭of‬ ‭0.86,‬ ‭and‬ ‭an‬ ‭F1-score‬ ‭of‬ ‭0.85.‬
‭Misclassifications‬ ‭with‬ ‭SN‬ ‭Ia‬ ‭were‬ ‭common,‬ ‭suggesting‬
‭that‬ ‭further‬ ‭refinement‬ ‭of‬ ‭features‬ ‭could‬ ‭improve‬
‭differentiation.‬

‭SNIbc (Type Ib/c Supernovae):‬
‭The‬‭model‬‭performed‬‭well‬‭for‬‭SNIbc,‬‭achieving‬‭a‬‭precision‬
‭of‬ ‭0.81,‬ ‭recall‬ ‭of‬ ‭0.82,‬ ‭and‬ ‭an‬ ‭F1-score‬ ‭of‬ ‭0.81.‬ ‭The‬
‭balanced‬‭performance‬‭suggests‬ ‭that‬ ‭the‬ ‭model‬ ‭successfully‬
‭captured‬ ‭the‬ ‭characteristics‬ ‭of‬ ‭SNIbc,‬ ‭although‬ ‭further‬
‭improvements in recall could enhance accuracy.‬

‭Tidal Disruption Events (TDEs):‬
‭The‬‭model‬‭performed‬‭well‬‭in‬‭classifying‬‭TDEs,‬‭achieving‬‭a‬
‭precision‬ ‭of‬ ‭0.90,‬ ‭recall‬ ‭of‬ ‭0.93,‬ ‭and‬ ‭an‬ ‭F1-score‬ ‭of‬ ‭0.91.‬
‭The‬ ‭model‬ ‭effectively‬ ‭captured‬ ‭the‬ ‭unique‬ ‭features‬ ‭of‬
‭TDEs, such as their sharp rise and gradual decay.‬

‭muLens-Single:‬
‭The‬‭model‬ ‭achieved‬‭high‬‭performance‬‭for‬ ‭muLens-Single,‬
‭with‬ ‭precision‬ ‭of‬ ‭0.96,‬ ‭recall‬ ‭of‬ ‭0.99,‬ ‭and‬ ‭an‬ ‭F1-score‬ ‭of‬
‭0.97.‬ ‭The‬ ‭model‬ ‭effectively‬ ‭captured‬ ‭the‬ ‭features‬ ‭of‬
‭gravitational‬ ‭microlensing‬ ‭events,‬ ‭demonstrating‬ ‭its‬
‭capability to handle rare transient classes.‬

‭Overall,‬ ‭the‬ ‭RNN-VAE‬ ‭model,‬ ‭paired‬ ‭with‬ ‭the‬ ‭GBC,‬
‭demonstrated‬ ‭strong‬ ‭performance‬‭across‬ ‭a‬ ‭broad‬‭range‬‭of‬ ‭transient‬
‭classes,‬ ‭as‬ ‭indicated‬‭by‬‭the‬ ‭precision,‬ ‭recall,‬‭and‬‭F1-scores.‬‭While‬‭the‬
‭model‬ ‭excelled‬‭in‬‭handling‬‭imbalanced‬‭classes‬‭like‬‭TDEs‬‭and‬‭CaRTs,‬
‭further‬ ‭refinement‬ ‭is‬ ‭needed‬ ‭to‬ ‭improve‬ ‭the‬ ‭classification‬ ‭of‬
‭overlapping classes, particularly SN Ia, SN Iax, and SN II.‬

‭_______________________________________‬

‭Figure‬ ‭4:‬ ‭This‬ ‭histogram‬ ‭provides‬ ‭a‬ ‭visual‬‭comparison‬
‭of the classes against each other.‬
‭__________________________________________‬

‭Confusion Matrix Analysis:‬
‭The‬‭confusion‬‭matrix‬ ‭(Figure‬ ‭5)‬ ‭provided‬‭insights‬ ‭into‬‭the‬ ‭model’s‬
‭strengths‬ ‭and‬ ‭weaknesses‬ ‭across‬ ‭all‬ ‭16‬‭classes‬ ‭(Pasquet‬ ‭et‬ ‭al.,‬ ‭2018).‬
‭While‬ ‭the‬ ‭diagonal‬ ‭elements‬ ‭showed‬‭high‬‭accuracy‬‭for‬ ‭most‬‭classes,‬
‭the‬‭highest‬‭misclassification‬‭rates‬‭occurred‬‭between‬‭SN‬‭Ia‬‭and‬‭SN‬‭II,‬
‭as‬ ‭well‬ ‭as‬ ‭between‬ ‭SN‬ ‭Iax‬ ‭and‬ ‭SN‬ ‭Ia.‬ ‭This‬ ‭suggests‬ ‭that‬ ‭while‬ ‭the‬
‭model‬ ‭performs‬ ‭well‬ ‭with‬ ‭distinct‬ ‭classes,‬ ‭it‬ ‭struggles‬ ‭with‬ ‭classes‬
‭that‬ ‭have‬ ‭overlapping‬ ‭photometric‬ ‭features.‬ ‭Enhancing‬‭the‬ ‭feature‬
‭extraction‬ ‭process‬ ‭or‬ ‭incorporating‬ ‭additional‬ ‭data‬ ‭could‬ ‭reduce‬
‭these errors.‬
‭__________________________________________‬

‭Figure‬ ‭5:‬ ‭This‬ ‭confusion‬ ‭matrix‬ ‭compares‬‭the‬‭true‬‭and‬
‭predicted‬‭labels‬‭of‬‭the‬‭data‬‭set‬‭against‬‭each‬‭other.‬‭Ideally,‬
‭a‬‭confusion‬‭matrix‬‭appears‬‭as‬‭a‬‭dark,‬‭diagonal‬‭line.‬‭Note:‬
‭created by student researcher.‬
‭__________________________________________‬

‭Handling Class Imbalance:‬
‭Class‬ ‭imbalance‬‭was‬‭a‬‭significant‬‭challenge‬‭during‬‭model‬‭training,‬‭as‬
‭common‬‭classes‬ ‭were‬ ‭more‬‭prevalent‬ ‭than‬‭rare‬ ‭ones‬ ‭(Boone,‬ ‭2019).‬
‭To‬ ‭address‬ ‭this,‬ ‭oversampling‬ ‭and‬ ‭class-weight‬ ‭adjustments‬ ‭were‬
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‭used.‬ ‭These‬ ‭strategies‬ ‭improved‬ ‭recall‬ ‭for‬ ‭underrepresented‬ ‭classes‬
‭but‬ ‭introduced‬ ‭a‬ ‭slight‬ ‭increase‬ ‭in‬ ‭false‬ ‭positives,‬ ‭particularly‬ ‭for‬
‭classes‬ ‭with‬ ‭similar‬ ‭features‬ ‭(Kessler‬ ‭et‬ ‭al.,‬ ‭2019).‬ ‭Future‬ ‭iterations‬
‭could‬ ‭further‬ ‭refine‬‭these‬ ‭methods‬‭to‬ ‭improve‬‭the‬ ‭balance‬‭between‬
‭precision and recall.‬

‭ROC and AUC-ROC Curve:‬
‭An‬ ‭average‬ ‭AUC-ROC‬ ‭curve‬ ‭(Figure‬ ‭6)‬ ‭was‬ ‭generated‬ ‭for‬ ‭all‬ ‭16‬
‭transient‬ ‭classes,‬ ‭providing‬ ‭a‬ ‭comprehensive‬ ‭evaluation‬ ‭of‬ ‭the‬
‭model’s‬ ‭overall‬ ‭performance‬ ‭(Hložek‬ ‭et‬ ‭al.,‬ ‭2020).‬ ‭With‬‭an‬‭average‬
‭AUC-ROC‬ ‭score‬ ‭of‬ ‭0.94,‬ ‭the‬ ‭model‬ ‭demonstrated‬ ‭robust‬
‭discriminative‬ ‭ability‬ ‭across‬‭classes.‬‭Averaging‬‭the‬‭AUC-ROC‬‭scores‬
‭simplified‬ ‭performance‬ ‭comparisons‬ ‭and‬ ‭facilitated‬ ‭a‬ ‭clear‬
‭assessment‬ ‭of‬ ‭the‬ ‭model’s‬ ‭effectiveness‬ ‭in‬ ‭distinguishing‬ ‭transient‬
‭types, even those with similar light curve features (Villar et al., 2019).‬

‭Comparison with Baseline Models:‬
‭The‬ ‭RNN-VAE‬ ‭+‬ ‭GBC‬ ‭model‬ ‭was‬ ‭compared‬ ‭against‬ ‭baseline‬
‭models‬ ‭(Figure‬ ‭7)‬‭used‬‭in‬‭the‬‭original‬‭PLAsTiCC‬‭competition,‬‭such‬
‭as‬ ‭Random‬ ‭Forests,‬ ‭Support‬ ‭Vector‬ ‭Machines‬ ‭(SVMs),‬ ‭and‬
‭Convolutional‬ ‭Neural‬‭Networks‬‭(CNNs)‬‭(Pasquet‬‭et‬‭al.,‬‭2018).‬‭The‬
‭RNN-VAE + GBC showed significant improvements:‬

‭●‬ ‭AUC-ROC:‬ ‭The‬ ‭model‬ ‭achieved‬ ‭an‬ ‭average‬ ‭AUC-ROC‬
‭score‬ ‭of‬ ‭0.94,‬ ‭outperforming‬ ‭baseline‬ ‭models,‬ ‭which‬
‭averaged between 0.87-0.89.‬

‭●‬ ‭Precision‬ ‭and‬ ‭Recall:‬ ‭For‬ ‭well-represented‬ ‭classes,‬ ‭the‬
‭RNN-VAE‬‭+‬‭GBC‬‭surpassed‬‭baseline‬ ‭models‬ ‭by‬‭5-10%‬‭in‬
‭precision‬‭and‬‭recall.‬ ‭For‬ ‭rare‬ ‭classes‬ ‭like‬‭TDEs‬‭and‬‭CaRTs,‬
‭the‬ ‭model‬ ‭improved‬ ‭precision‬ ‭and‬ ‭recall‬ ‭by‬ ‭10-15%‬ ‭over‬
‭the baselines.‬

‭●‬ ‭Reduced‬ ‭Misclassifications:‬ ‭The‬ ‭hybrid‬ ‭architecture‬
‭allowed‬ ‭for‬ ‭better‬ ‭handling‬ ‭of‬ ‭complex‬ ‭decision‬
‭boundaries,‬ ‭reducing‬‭misclassifications,‬‭particularly‬‭among‬
‭supernova subclasses‬

‭Comparison with Baseline Models:‬
‭The‬ ‭RNN-VAE‬ ‭+‬ ‭GBC‬ ‭model‬ ‭was‬ ‭compared‬ ‭against‬ ‭baseline‬
‭models‬ ‭(Figure‬ ‭7)‬‭used‬‭in‬‭the‬‭original‬‭PLAsTiCC‬‭competition,‬‭such‬
‭as‬ ‭Random‬ ‭Forests,‬ ‭Support‬ ‭Vector‬ ‭Machines‬ ‭(SVMs),‬ ‭and‬
‭Convolutional‬ ‭Neural‬‭Networks‬‭(CNNs)‬‭(Pasquet‬‭et‬‭al.,‬‭2018).‬‭The‬
‭RNN-VAE + GBC showed significant improvements:‬
‭AUC-ROC:‬ ‭The‬ ‭model‬ ‭achieved‬ ‭an‬ ‭average‬ ‭AUC-ROC‬ ‭score‬ ‭of‬
‭0.94,‬ ‭outperforming‬ ‭baseline‬ ‭models,‬ ‭which‬ ‭averaged‬ ‭between‬
‭0.87-0.89.‬

‭●‬ ‭Precision‬ ‭and‬ ‭Recall:‬ ‭For‬ ‭well-represented‬ ‭classes,‬ ‭the‬
‭RNN-VAE‬‭+‬‭GBC‬‭surpassed‬‭baseline‬ ‭models‬ ‭by‬‭5-10%‬‭in‬
‭precision‬‭and‬‭recall.‬ ‭For‬ ‭rare‬ ‭classes‬ ‭like‬‭TDEs‬‭and‬‭CaRTs,‬
‭the‬ ‭model‬ ‭improved‬ ‭precision‬ ‭and‬ ‭recall‬ ‭by‬ ‭10-15%‬ ‭over‬
‭the baselines.‬

‭●‬ ‭Reduced‬ ‭Misclassifications:‬ ‭The‬ ‭hybrid‬ ‭architecture‬
‭allowed‬ ‭for‬ ‭better‬ ‭handling‬ ‭of‬ ‭complex‬ ‭decision‬
‭boundaries,‬ ‭reducing‬‭misclassifications,‬‭particularly‬‭among‬
‭supernova subclasses.‬

‭__________________________________________‬

‭Figure‬ ‭6:‬ ‭The‬ ‭Receiver‬ ‭Operating‬ ‭Characteristic‬‭(ROC)‬
‭Curve‬ ‭shows‬ ‭the‬ ‭relationship‬ ‭between‬ ‭the‬‭false‬‭and‬‭true‬
‭positive‬ ‭rate,‬ ‭demonstrating‬ ‭the‬‭discrimination‬‭ability‬‭of‬
‭the‬ ‭model.‬ ‭This‬ ‭ROC‬ ‭curve‬ ‭demonstrates‬ ‭the‬
‭micro-averages‬ ‭of‬ ‭each‬ ‭class.‬ ‭Note:‬ ‭created‬ ‭by‬ ‭student‬
‭researcher.‬
‭__________________________________________‬

‭Limitations:‬
‭Despite‬‭the‬‭promising‬‭results‬‭of‬‭the‬‭RNN-VAE‬‭+‬‭Gradient‬‭Boosting‬
‭Classifier model, several limitations need to be addressed:‬

‭●‬ ‭Overlapping‬ ‭Light‬ ‭Curve‬ ‭Characteristics:‬ ‭One‬ ‭of‬ ‭the‬
‭main‬‭challenges‬ ‭observed‬‭was‬‭the‬‭misclassification‬‭between‬
‭transient‬ ‭classes‬ ‭with‬ ‭similar‬ ‭light‬ ‭curve‬ ‭features,‬ ‭such‬ ‭as‬
‭Type‬ ‭Ia‬ ‭(SN‬ ‭Ia)‬ ‭and‬ ‭Type‬ ‭Iax‬ ‭supernovae.‬ ‭The‬ ‭model‬
‭sometimes‬ ‭struggled‬ ‭to‬ ‭differentiate‬ ‭these‬ ‭classes‬ ‭due‬ ‭to‬
‭their‬ ‭overlapping‬ ‭photometric‬ ‭features,‬ ‭particularly‬ ‭in‬ ‭the‬
‭early‬ ‭stages‬ ‭of‬ ‭their‬ ‭light‬ ‭curves.‬ ‭This‬ ‭limitation‬‭indicates‬
‭that‬ ‭additional‬ ‭distinguishing‬ ‭features,‬ ‭such‬ ‭as‬ ‭spectral‬
‭data, could improve classification accuracy.‬

‭●‬ ‭Handling‬‭Noisy‬‭Data:‬‭While‬‭the‬‭RNN-VAE‬‭architecture‬
‭includes‬ ‭mechanisms‬‭to‬‭handle‬‭incomplete‬‭data,‬‭it‬‭remains‬
‭sensitive‬ ‭to‬ ‭noise‬ ‭and‬ ‭distortions‬ ‭in‬ ‭light‬ ‭curves.‬ ‭In‬‭cases‬
‭where‬ ‭data‬ ‭quality‬ ‭was‬ ‭compromised‬ ‭(e.g.,‬ ‭due‬ ‭to‬ ‭low‬
‭signal-to-noise‬ ‭ratios‬ ‭or‬ ‭gaps‬ ‭in‬ ‭observations),‬ ‭the‬
‭reconstruction‬ ‭of‬ ‭light‬ ‭curves‬ ‭retained‬ ‭some‬ ‭distortions,‬
‭which‬ ‭affected‬ ‭classification‬ ‭accuracy.‬ ‭Future‬
‭improvements‬ ‭could‬ ‭involve‬ ‭advanced‬‭denoising‬‭methods‬
‭or‬ ‭integrating‬ ‭attention‬ ‭mechanisms‬ ‭to‬ ‭better‬ ‭focus‬ ‭on‬
‭cleaner data segments.‬

‭●‬ ‭Computational‬ ‭Complexity:‬‭The‬‭combined‬‭RNN-VAE‬
‭and‬ ‭Gradient‬ ‭Boosting‬ ‭Classifier‬ ‭architecture‬ ‭is‬
‭computationally‬ ‭intensive,‬ ‭requiring‬‭significant‬ ‭processing‬
‭power‬ ‭for‬ ‭training‬‭and‬‭inference.‬ ‭This‬ ‭presents‬ ‭challenges‬
‭for‬ ‭scaling‬ ‭the‬ ‭model‬ ‭to‬ ‭larger‬ ‭datasets‬ ‭or‬ ‭deploying‬‭it‬ ‭in‬
‭real-time‬ ‭settings.‬ ‭Optimizations‬ ‭like‬ ‭model‬ ‭pruning,‬
‭quantization,‬ ‭or‬ ‭distributed‬‭computing‬‭could‬‭help‬‭address‬
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‭this‬ ‭limitation,‬ ‭making‬ ‭the‬ ‭model‬ ‭more‬ ‭efficient‬ ‭without‬
‭sacrificing accuracy.‬

‭●‬ ‭Class‬ ‭Imbalance‬ ‭Effects:‬‭Although‬‭the‬ ‭model‬ ‭effectively‬
‭handled‬ ‭class‬ ‭imbalance‬ ‭through‬ ‭oversampling‬ ‭and‬
‭class-weight‬ ‭adjustments,‬ ‭these‬ ‭techniques‬ ‭introduced‬ ‭a‬
‭slight‬ ‭increase‬ ‭in‬ ‭false‬ ‭positives‬ ‭for‬ ‭certain‬ ‭classes‬ ‭with‬
‭overlapping‬ ‭characteristics.‬ ‭This‬ ‭trade-off‬ ‭highlights‬ ‭the‬
‭need‬ ‭for‬ ‭more‬ ‭sophisticated‬ ‭strategies,‬ ‭such‬ ‭as‬ ‭synthetic‬
‭data‬ ‭generation‬‭through‬‭Generative‬ ‭Adversarial‬ ‭Networks‬
‭(GANs),‬ ‭to‬ ‭balance‬‭recall‬‭and‬‭precision‬‭without‬‭increasing‬
‭misclassifications.‬

‭●‬ ‭Generalization‬ ‭to‬ ‭New‬ ‭Data:‬ ‭While‬ ‭the‬ ‭model‬
‭demonstrated‬ ‭strong‬ ‭performance‬ ‭on‬ ‭the‬ ‭PLAsTiCC‬
‭dataset,‬ ‭its‬ ‭generalization‬ ‭to‬ ‭new,‬ ‭unseen‬‭datasets‬ ‭remains‬
‭uncertain.‬ ‭Variations‬ ‭in‬ ‭telescope‬‭sensitivity,‬ ‭observational‬
‭conditions,‬ ‭or‬ ‭transient‬ ‭event‬ ‭characteristics‬ ‭could‬‭impact‬
‭model‬ ‭performance.‬ ‭Additional‬ ‭training‬‭with‬‭more‬‭diverse‬
‭datasets could improve robustness and generalizability.‬

‭__________________________________________‬

‭Figure‬ ‭7:‬ ‭The‬ ‭confusion‬ ‭matrices‬ ‭showcase‬ ‭the‬
‭pseudo-confusion‬ ‭matrices‬ ‭of‬ ‭the‬ ‭top‬ ‭three‬ ‭submissions‬
‭of‬ ‭the‬ ‭Kaggle‬ ‭contest.‬ ‭Note:‬ ‭This‬ ‭figure‬ ‭is‬ ‭adapted‬ ‭from‬
‭Hložek et al. 2020.‬
‭_________________________________‬‭_______‬

‭Future Work:‬
‭To‬ ‭address‬ ‭these‬ ‭limitations‬ ‭and‬ ‭further‬ ‭enhance‬ ‭the‬ ‭model’s‬
‭performance, several future directions are proposed:‬

‭●‬ ‭Incorporating‬ ‭Spectral‬ ‭Data:‬ ‭Integrating‬ ‭spectral‬ ‭data‬
‭alongside‬ ‭photometric‬ ‭data‬ ‭could‬ ‭improve‬ ‭feature‬
‭extraction,‬ ‭particularly‬ ‭for‬ ‭distinguishing‬ ‭between‬ ‭similar‬
‭transient classes (Boone, 2019).‬

‭●‬ ‭Attention‬ ‭Mechanisms:‬ ‭Adding‬ ‭attention‬ ‭mechanisms‬
‭to‬ ‭the‬ ‭RNN-VAE‬ ‭architecture‬ ‭could‬ ‭enhance‬ ‭feature‬

‭learning‬ ‭by‬ ‭focusing‬ ‭on‬ ‭the‬ ‭most‬ ‭relevant‬ ‭temporal‬
‭patterns in the light curves (Villar et al., 2019).‬

‭●‬ ‭Advanced‬ ‭Augmentation:‬ ‭Utilizing‬ ‭advanced‬ ‭data‬
‭augmentation‬ ‭techniques,‬ ‭such‬ ‭as‬ ‭synthetic‬ ‭light‬ ‭curve‬
‭generation‬ ‭via‬ ‭Generative‬ ‭Adversarial‬ ‭Networks‬ ‭(GANs),‬
‭could‬ ‭help‬ ‭balance‬ ‭the‬ ‭dataset‬ ‭and‬‭provide‬‭more‬‭training‬
‭samples‬ ‭for‬ ‭rare‬ ‭classes‬ ‭(Rezende‬ ‭et‬ ‭al.,‬ ‭2014).‬ ‭Hybrid‬
‭Models:‬‭Exploring‬‭hybrid‬‭models‬‭that‬‭combine‬‭RNN-VAE‬
‭with‬ ‭other‬ ‭algorithms,‬ ‭such‬ ‭as‬ ‭XGBoost‬ ‭or‬ ‭Random‬
‭Forests,‬ ‭could‬ ‭offer‬ ‭complementary‬ ‭strengths‬ ‭in‬ ‭handling‬
‭imbalanced datasets and improving decision boundaries.‬

‭●‬ ‭Real-Time‬ ‭Optimization:‬ ‭Developing‬ ‭a‬ ‭lightweight‬
‭version‬ ‭of‬ ‭the‬ ‭model,‬ ‭using‬ ‭techniques‬ ‭like‬ ‭pruning‬ ‭or‬
‭quantization,‬ ‭could‬ ‭reduce‬ ‭computational‬ ‭demands‬ ‭and‬
‭enable‬‭faster‬‭inference‬‭for‬‭real-time‬‭applications‬‭(Pasquet‬‭et‬
‭al., 2018).‬

‭●‬ ‭Ensemble Variations:‬
‭Investigating‬ ‭ensemble‬ ‭variations‬ ‭like‬ ‭stacking‬ ‭or‬ ‭bagging‬
‭could‬ ‭improve‬ ‭classification‬ ‭accuracy‬ ‭and‬ ‭robustness,‬
‭especially‬‭for‬‭classes‬‭with‬‭overlapping‬‭features.‬‭By‬‭pursuing‬
‭these‬ ‭directions,‬ ‭the‬ ‭model‬ ‭can‬ ‭be‬ ‭further‬ ‭refined‬ ‭to‬
‭enhance‬ ‭its‬ ‭classification‬ ‭accuracy,‬ ‭robustness,‬ ‭and‬
‭adaptability‬ ‭to‬ ‭the‬ ‭evolving‬ ‭demands‬ ‭of‬ ‭real-time‬
‭astronomical surveys.‬

‭Conclusion‬
‭This‬ ‭study‬ ‭presents‬ ‭an‬ ‭effective‬ ‭approach‬ ‭for‬ ‭classifying‬ ‭transient‬
‭astronomical‬ ‭events,‬ ‭combining‬ ‭a‬ ‭Recurrent‬ ‭Neural‬ ‭Network‬
‭Variational‬ ‭Autoencoder‬ ‭(RNN-VAE)‬ ‭with‬ ‭a‬ ‭Gradient‬ ‭Boosting‬
‭Classifier‬ ‭(GBC).‬ ‭The‬ ‭hybrid‬ ‭model‬ ‭achieved‬ ‭strong‬ ‭performance,‬
‭with‬ ‭an‬ ‭overall‬ ‭accuracy‬ ‭of‬ ‭89%‬ ‭and‬ ‭an‬‭AUC-ROC‬‭score‬ ‭of‬ ‭0.94,‬
‭surpassing‬ ‭traditional‬ ‭methods‬ ‭in‬ ‭precision‬ ‭and‬ ‭recall,‬ ‭particularly‬
‭for‬ ‭complex‬ ‭events‬ ‭like‬ ‭Tidal‬ ‭Disruption‬ ‭Events‬ ‭(TDEs)‬ ‭and‬
‭Calcium-Rich Transients (CaRTs).‬

‭The‬ ‭findings‬ ‭highlight‬ ‭the‬ ‭potential‬ ‭of‬ ‭deep‬ ‭learning‬
‭models‬ ‭to‬ ‭manage‬ ‭imbalanced‬ ‭datasets‬ ‭and‬ ‭noisy,‬ ‭real-time‬ ‭data.‬
‭Unlike‬ ‭baseline‬ ‭models,‬ ‭which‬ ‭struggled‬ ‭with‬ ‭overlapping‬ ‭light‬
‭curve‬ ‭features,‬ ‭the‬ ‭RNN-VAE‬ ‭+‬ ‭GBC‬ ‭demonstrated‬ ‭resilience‬ ‭in‬
‭distinguishing‬ ‭between‬ ‭classes,‬ ‭including‬ ‭ambiguous‬ ‭supernova‬
‭subclasses.‬ ‭This‬ ‭capability‬ ‭not‬ ‭only‬ ‭improves‬ ‭classification‬‭accuracy‬
‭but‬ ‭also‬‭facilitates‬‭confident‬‭identification‬‭of‬‭both‬‭common‬‭and‬‭rare‬
‭phenomena, pushing the boundaries of automated event analysis.‬

‭The‬‭model’s‬ ‭scalability‬ ‭and‬‭adaptability‬‭make‬‭it‬‭promising‬
‭for‬ ‭next-generation‬‭astronomical‬ ‭surveys,‬ ‭such‬‭as‬‭the‬‭Vera‬‭C.‬‭Rubin‬
‭Observatory’s‬ ‭Legacy‬ ‭Survey‬‭of‬ ‭Space‬‭and‬‭Time‬‭(LSST).‬ ‭However,‬
‭challenges‬ ‭remain,‬ ‭such‬ ‭as‬ ‭distinguishing‬ ‭between‬ ‭classes‬ ‭with‬
‭overlapping‬ ‭characteristics‬ ‭and‬ ‭reducing‬ ‭sensitivity‬ ‭to‬ ‭noisy‬ ‭data.‬
‭Future‬ ‭work‬ ‭should‬ ‭focus‬ ‭on‬ ‭integrating‬ ‭spectral‬ ‭data,‬ ‭attention‬
‭mechanisms,‬ ‭or‬ ‭advanced‬ ‭augmentation‬ ‭techniques‬ ‭to‬ ‭enhance‬
‭accuracy and robustness.‬

‭In‬ ‭conclusion,‬ ‭this‬ ‭research‬ ‭represents‬ ‭a‬ ‭significant‬
‭advancement‬ ‭in‬ ‭automated‬ ‭transient‬ ‭classification.‬ ‭With‬ ‭further‬
‭refinement,‬ ‭the‬ ‭hybrid‬‭model‬ ‭could‬‭play‬ ‭a‬ ‭crucial‬ ‭role‬ ‭in‬‭processing‬
‭vast‬ ‭astronomical‬ ‭datasets,‬ ‭improving‬ ‭real-time‬ ‭discovery‬ ‭and‬
‭understanding of dynamic cosmic events.‬
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