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The rapid advancement of astronomical survey technologies, such as the Vera C. Rubin Observatory’s Legacy
Survey of Space and Time (LSST), is expected to generate millions of transient events annually, posing significant
challenges in processing large volumes of unlabeled data. To address this, a deep learning model was developed,
combining a Recurrent Neural Network Variational Autoencoder (RNN-VAE) for dimensionality reduction with a
Gradient Boosting Classifier for real-time classification of transient events. This model efficiently classifies
galactic and extragalactic transients without the need for labeled data. Using the PLASTiCC dataset, the model
achieved an AUC-ROC score of 0.94 and F-1 score of 0.89, demonstrating strong performance in distinguishing
between various transient classes, including rare events. This approach offers a scalable solution for real-time
astronomical surveys, enhancing both -classification accuracy and resource allocation in future data-rich

environments.
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Introduction

The rapid advancement of astronomical survey technologies is set to
provide astronomers with unprecedented volumes of data. The Vera
C. Rubin Observatory’s decade-long Legacy Survey of Space and
Time (LSST), in particular, is expected to detect millions of
transient events annually (Ivezi¢ et al., 2019). This data influx offers
the potential for the discovery of rare and previously unknown
transient events.

However, managing this overwhelming volume of data
presents significant challenges. Identifying which transients merit
further investigation becomes increasingly difficult with the scale of
incoming data. Spectroscopic follow-up, a critical method for
understanding transient events, is both resource-intensive and
requires a meticulous approval process, further complicating the
selection of optimal targets for observation. Additionally, transient
events must be captured near their peak brightness to justify the
allocation of these limited resources.

To address these challenges, efficient methods for real-time
labeling and prediction of transient events are urgently required.
Early efforts in this field focused on photometric classification to
build pure samples of transients (Boone, 2019). More recent
approaches have shifted towards anomaly detection, with several
methods demonstrating success when using complete light curve
data from extensive surveys (Pasquet et al., 2018; Muthukrishna et
al, 2019). However, these models struggle when faced with
incomplete data, a common challenge in real-time analysis. To

overcome this limitation, recent studies have explored the use of
autoencoders to manage unlabeled data (Morawski et al., 2021).

This paper proposes a model aimed at real-time
classification of galactic and extragalactic transient events, building
on recent advancements in deep learning and autoencoder-based
architectures. Section two describes the dataset and feature
extraction process, while section three, four, and five outline the
model and training process of the RNN-VAE and Gradient Boosting
Classifier (GBC). The results are discussed in section six, where the
model is heavily evaluated and compared to baseline models, and its
limitations and future work are further stated. Finally, the paper is
concluded in section 7.

Data

The model was trained and evaluated using the Photometric LSST
Astronomical Time-series Classification Challenge (PLAsTiCC)
dataset, which was initially created for a public competition hosted
on Kaggle. Although the competition has since concluded, the
dataset and the methods it inspired remain highly relevant due to the
scale and innovation it introduced to the data science community
(Hlozek et al., 2020). The PLAsTiCC dataset contains simulated
data based on approximately three years of observation from the
Rubin Observatory (Kessler et al., 2019). It includes light curves and
metadata such as redshift, flux, magnitude, corresponding errors,
and additional physical parameters across six observational passbands
(ugrizy). For this model, light curves and metadata were integrated
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and processed through the RNN-VAE for feature extraction prior to
classification.

For this study, 100,000 data points spanning sixteen
transient event classes were used. These classes were selected to
provide a balanced representation of both common and rare
astronomical events. Frequently occurring events, such as
supernovae, were well-represented, allowing the model to eftectively
learn their distinguishing characteristics. Conversely, rarer events like
Tidal Disruption Events (TDEs) and Calcium-rich transients
(CaRTs) were included to assess the model’s capability in classifying
minority classes, which typically present more challenges due to their
limited instances.

To ensure balance, event classes with fewer than three
instances were excluded from the analysis, as they would not provide
sufficient data for reliable classification. This selection process
enabled the model to be exposed to a diverse, yet representative,
range of transient phenomena, ensuring it could generalize well
across different event types. Balancing the dataset was crucial in
mitigating bias toward overrepresented classes, while still allowing
the model to effectively handle underrepresented, yet scientifically
significant, events. Further details of the data selection process,
including class distributions and the methods used to preserve their
frequencies, are discussed in the pre-processing section.

AGN (Active Galactic Nuclei)

Active Galactic Nuclei (AGN) are highly energetic regions
located at the centers of galaxies, characterized by the
emission of intense radiation and variability in brightness
over different timescales. Despite being relatively common,
AGNs make up approximately 6.3% of the dataset, aligning
with their prevalence in the universe.

CaRT (Calcium-Rich Transients)

Calcium-rich transients are a rare type of supernova known
for their rapid evolution, relatively low peak luminosity,
and strong calcium emission lines. These events account
for roughly 0.3% of the dataset, accurately reflecting their
rarity in astronomical observations.

EB (Eclipsing Binaries)

Eclipsing Binaries are systems of two stars whose orbits are
oriented such that they periodically eclipse each other from
the perspective of Earth. This leads to fluctuations in
brightness. Given their common occurrence, EBs are
well-represented in the dataset.

ILOT (Intermediate Luminosity Optical Transients)
Intermediate Luminosity Optical Transients (ILOTs) are
astronomical events that explode with brightness levels
between novae and supernovae. These rare occurrences
account for less than 0.1% of the dataset.

M-Dwarf (Low-Mass Stars)

M-dwarfs, also known as low-mass stars, are stars smaller
and significantly less luminous than the Sun. These stars
represent a substantial portion of the dataset due to their
frequency in the universe.

Mira (Mira-Type Variable Stars)

Mira-type variable stars are cool red giants known for their
periodic changes in brightness. They are massive and very
luminous compared to the Sun, although they make up less

than 0.1% of the dataset, reflecting their status as a
minority event.

PISN (Pair Instability Supernovae)
Pair Instability Supernovae (PISN) are rare types of
supernovae that result from collisions between gamma rays
and atomic nuclei, producing free electrons and positrons.
These events also make up less than 0.1% of the dataset.

RRL (RR Lyrae Variable Stars)
RR  Lyrae variable stars are periodic variable stars
commonly found in globular clusters. They make up a
significant portion of the dataset due to their
well-understood light curve characteristics.

SLSN-I (Type I Superluminous Supernovae)
Type I Superluminous Supernovae (SLSN-I) are
hydrogen-free stellar explosions that are roughly ten times
more luminous than typical supernovae. These events
constitute approximately 2% of the dataset.

SN-Ia (Type Ia Supernovae)
Type Ia Supernovae (SN-Ia) are binary systems containing
a white dwarf star. Known for their consistent peak
luminosity and lack of hydrogen in their spectra, they
represent over half of the dataset, making them the most
frequent class of transient events.

SN-II (Type II Supernovae)
Type II Supernovae (SN-II) are massive stellar explosions
characterized by the retention of hydrogen. These events,
which exhibit long plateaus in their light curves, account
for about one-fourth of the dataset, making them a major
class.

SNIa-91bg (Type Ia-91bg Supernovae)
These are dimmer, faster, and redder variants of Type Ia
Supernovae. Due to their shorter observable window, they
make up about 1% of the dataset.

SNIax (Type Iax Supernovae)
Type Iax Supernovae are dimmer and faster than
traditional SN-Ia events, although they are not necessarily
redder. They constitute roughly 2% of the dataset.

SNIbc (Type Ibc Supernovae)
Type Ibc Supernovae result from the explosions of stars
that have shed their helium and hydrogen envelopes. These
events account for approximately 6% of the sample.

TDE (Tidal Disruption Events)
Tidal Disruption Events (TDEs) occur when a star is torn
apart by the immense gravitational forces of a supermassive
black hole. These rare events make up less than 1% of the
dataset.

muLens-Single (Gravitational Microlensing Events)
Gravitational microlensing events result in a temporary
increase in the brightness of background stars due to the
gravitational influence of a massive foreground object.
These events are uncommon, comprising less than 2% of
the dataset.

Data Pre-Processing:

Before the light curves were input into the model, a
thorough pre-processing routine was conducted to ensure the
quality and reliability of the training data. Initially, any data points
exceeding seven standard deviations from the mean were removed to
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mitigate the impact of extreme outliers. Following this, sigma
clipping was applied for five iterative cycles to account for potential
shifts in the mean caused by residual outliers.

Several additional steps were implemented to address the
astrophysical characteristics of the dataset. For nearby galactic events,
particularly those with redshift values around 0.001, the distance
modulus was adjusted to reflect a standard distance of approximately
10 megaparsecs (Heymann, 2012). This adjustment ensured
consistency in distance measurements across different events,
facilitating more accurate comparisons.

The magnitude scale was then recalibrated, with brightness
increases represented by smaller apparent magnitudes, in line with
standard astronomical observational practices. Additionally, to
correct for dust extinction effects in the Milky Way, the Fitzpatrick
(1999) extinction model was applied. This model, based on Milky
Way parameters, assumes an extinction law of Rv = 3.1, with central
wavelengths corresponding to the six LSST filters (ugrizy).

Event classes with fewer than three instances were excluded
from the dataset to enhance the model’s performance and ensure
that statistically significant data were included in the final analysis.
This pre-processing phase was essential for preparing the dataset,
ensuring that it was both clean and representative of the various
transient events being classified.

SNia AGN

o B £ % LY 100
Restframe days since discovery

Figure 1:
lightcurves of SN Ia, AGN, and SLSN-I in terms of
absolute magnitude. Note: created by student researcher
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RNN-VAE Model Architecture

The model architecture employed in this study integrates a
Recurrent Neural Network Variational Autoencoder (RNN-VAE)
to reduce data dimensionality while retaining critical features of
transient events. This architecture was chosen based on previous
findings that demonstrated the effectiveness of feature extraction in
supernova classification (V. Villar et al, 2019). The RNN-VAE
model combines both RNN and VAE components, providing a dual
advantage: capturing temporal dependencies in the data while
generating a meaningful latent space representation.

The RNN-VAE comprises two main components: the
encoder and the decoder (Figure 2). The encoder processes light
curves, generating parameters that define the data’s latent space
representation.

Meanwhile, the decoder reconstructs the light curves from
this compressed representation, reducing the feature set while
maintaining vital information.
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Figure 2: This diagram visually represents the structure
of the RNN-VAE. Note: created by student researcher.

Encoder:
The encoder compresses the input light curves into a Gaussian
distribution. It operates in three stages:

1. Gated Recurrent Unit (GRU): The input data passes
through a GRU, a type of recurrent neural network that
leverages sigmoid and hyperbolic tangent (tanh) activation
functions to transform the input into latent outputs.
These activation functions help regulate the information
flow, deciding how much to retain from previous steps.

2. Fully Connected Layers: Two fully connected layers follow,
applying linear and non-linear transformations to learn
complex relationships between features.

3. Latent Space Representation: The final output of the
encoder comprises the mean, standard deviation, and
Gaussian distribution parameters that define the latent
space.

Decoder:

The decoder reverses the encoding process, reconstructing light
curves from the reduced latent space representation. It uses
additional GRUs and fully connected layers to map the compressed
data back to its original form. The decoder’s output sequence retains
only the most relevant features, optimized to include the six most
significant features necessary for classification .

Feature Selection and Optimization:

The decision to limit the number of features to six was based on
performance trials aimed at balancing model complexity and
classification accuracy. These trials tested various feature counts,
ranging from three to twelve, evaluating both the accuracy of the
final classifier and the training/validation loss of the RNN-VAE
itself. Results indicated that fewer than six features led to a drop in
accuracy due to the loss of essential information, while more than six
features resulted in diminishing returns and increased complexity,
causing overfitting. Six features were thus selected as the optimal
number for maintaining detail while ensuring model efficiency.
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Table 1: Number of Features vs. Accuracy

Number of Features Accuracy
1 0.001
2 0.03
3 0.15
4 0.56
5 0.79
6 0.89
7 0.88
8 0.89
9 0.82
10 0.83
15 0.78

20 0.82
25 0.65

Table 1: This table of values compares the number of
features to the overall model’s accuracy, demonstrating 6
features as the most accurate and efficient number. Note:
created by student researcher.

How GRU Works in RNN-VAE:
The Gated Recurrent Unit (GRU) is a critical component of the
RNN-VAE architecture, designed to efficiently process sequential
data, such as the light curves of transient events. It is a type of
recurrent neural network that optimizes the handling of temporal
dependencies while minimizing computational complexity. Unlike
traditional Recurrent Neural Networks (RNNs), GRUs utilize
gating mechanisms to control the flow of information, making them
particularly suited for time-series data with irregular time steps or
missing values—common in astronomical datasets.

The GRU’s structure (Figure 3) is simpler than that of the
Long Short-Term Memory (LSTM) units but retains similar
effectiveness in sequence learning. It comprises two primary
gates—an update gate and a reset gate—that regulate the flow of
information through the network:
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Figure 3: This diagram visually represents the structure
of a GRU. Note: created by student researcher.

Update Gate:

e The update gate determines how much of the previous
information needs to be carried forward to the next time
step.

e It combines the roles of the LSTM’s forget and input gates,
effectively deciding which information to retain and which
to discard.

e Mathematically, the update gate (ztz_tzt) is calculated as:

z = O'(WZ e [h ,x])

t—1" "t

where W, is the weight matrix, ht_1 is the hidden state

from the previous time step, and x, is the current input.

Reset Gate:

® The reset gate decides how much of the past information
should be forgotten at the current time step.

e This allows the GRU to focus more on recent information
when making predictions, which is crucial for
reconstructing light curves in the decoder.

®  The reset gate (,)is computed as:

ro= G(Wr e [h ,x])

t—-1" "t

Current Memory Content:
After determining the update and reset gates, the GRU computes
)

the candidate hidden state (ht), which incorporates both the current
input and the previous hidden state,
t modulated by the reset gate: ht = tanh(W e [rt * ht—l’ xt])

Here, the reset gate (1) controls how much of the past information
influences the current candidate hidden state.

Hidden State Update:
The final hidden state ht is a linear interpolation between the

previous hidden state and the candidate hidden state, determined by
the update gate:
— * * ~

ht =01-2 ht_1 ht
Role of GRU in RNN-VAE for Transient Classification:
The GRU’s gating mechanisms allow the model to selectively retain
or discard information at each time step, making it highly effective in
modeling sequential dependencies in light curves. In the context of
transient event classification, GRUs help capture key temporal
patterns in the evolving brightness of different astronomical
phenomena. This capability is essential for accurately reconstructing
light curves and extracting meaningful features for subsequent
classification.

The GRU’s simplicity and efficiency, compared to more
complex units like LSTMs, also make it faster to train while
maintaining  strong  performance. This balance between
computational efficiency and temporal accuracy is critical for
handling the large, real-time datasets generated by astronomical

surveys like the LSST.

Training and Optimization

The training of the Recurrent Neural Network Variational
Autoencoder (RNN-VAE) was carried out in distinct phases:
initialization, the training loop, optimization, and validation.
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Initialization Phase:

Initially, the model’s parameters were randomly assigned to ensure
reproducibility across trials. Random initialization is crucial for
establishing a baseline and enabling consistent performance
comparisons (Kingma & Ba, 2015).

Training Loop:

The model was trained over multiple epochs, with each epoch
comprising batches of data, allowing efficient processing of the
dataset (Paszke et al., 2019). The training continued until either the
entire dataset was processed or improvements in performance
stagnated. Each epoch involved a forward pass through the encoder
and decoder, followed by a backward pass to compute gradients and
update model parameters.

During the forward pass:
e Encoder: The encoder compresses input light curves into
latent space representations (Rezende et al., 2014).
® Decoder: The decoder reconstructs the light curves from
this latent space.
After the forward pass, the backward pass computed gradients and
loss values, which were used to refine model parameters and improve
accuracy.

Optimization Strategy:
The optimization process employed the Adaptive Moment
Estimation (Adam) optimizer, selected for its ability to adjust
learning rates dynamically based on the first and second moments of
the gradients (Kingma & Ba, 2015). Adam is particularly effective for
managing sparse gradients in deep learning models, making it
suitable for sequential data processing in this context.
The optimization process involved:
1. Gradient Calculation: Gradients of the loss were computed
with respect to model parameters.
2. Parameter Updates: Parameters were iteratively updated to
minimize the loss, facilitating convergence.

Composite Loss Function:
To maximize model performance, a composite loss function was
utilized:
1. Mean Squared Error (MSE): Measures the reconstruction
error between the original and reconstructed light curves,
ensuring critical features are retained (Bengio et al., 2013).

MSE =20~ 7))

2. Kullback-Leibler (KL) Divergence: Measures the
divergence between the latent distribution and a Gaussian
prior, guiding the latent space to conform to a normal
distribution (Kingma & Welling, 2013).

_ P(X)

The combination of MSE and KL Divergence aimed to maximize
the Evidence Lower Bound (ELBO), a standard objective in VAEs
that improves both reconstruction quality and the latent space
distribution (Rezende et al., 2014).

Hyperparameter Tuning for GRU:
Several hyperparameters were adjusted throughout training to
optimize model performance:

o Number of Layers: The GRU layers were set to 2,
balancing complexity and computational efficiency (Cho et
al., 2014).

e Hidden Units: 64 hidden units per GRU layer were
chosen based on validation accuracy, ensuring sufficient
capacity to capture light curve features.

e Learning Rate: A starting learning rate of 0.001 was used,
with gradual decay to prevent overshooting minima during
optimization.

e Batch Size: A batch size of 128 was found to be optimal,
offering a good balance between convergence speed and
stability (Paszke et al., 2019).

Validation and Early Stopping:

Validation was performed after each epoch, with validation loss
serving as the primary performance metric. Early stopping was
implemented to prevent overfitting, terminating training when the
validation loss began to increase while the training loss remained
stable (Prechelt, 1998). This comprehensive training process enabled
the model to effectively extract meaningful features from light curves
while maintaining robustness in classification tasks (Villar et al.,
2019).

Gradient Boosting Classifier

A Gradient Boosting Classifier is an ensemble machine learning
model that iteratively trains multiple sequential models to mitigate
the errors of each preceding layer. The classifier utilizes a loss
function known as deviance loss, which is derived from the negative
log-likelihood of the multinomial distribution. Deviance loss
imposes significant penalties for misclassifications, making it
particularly effective for handling heavily imbalanced datasets, as
illustrated in the following equation:

231y, (0g) = ~ (7, = )]

In addition to employing deviance loss, the Gradient
Boosting Classifier incorporates gradient calculations to minimize
the loss concerning the outputs of the preceding learner, such as the
RNN-VAE utilized in this study. This methodology is akin to the
approaches taken by previous researchers who employed an Extreme
Boosting Classifier to classify supernovae
based on extracted features (M oller et al. 2016).

The base classifier within this framework is a decision tree,
often referred to as a “weak learner.” However, when combined in a
Gradient Boosting Classifier, these decision trees form a much
stronger predictive model. Gradient Boosting Classifiers are known
for their high predictive capabilities and superior performance in
handling heterogeneous data. Given the complex nature of the
dataset in this study, the Gradient Boosting Classifier demonstrated
improved performance compared to alternative models, such as
Random Forest and Support Vector Machines.

The model underwent an iterative fine-tuning process over
105 cycles, during which key hyperparameters were carefully
adjusted to optimize performance. These parameters included the
number of estimators, maximum tree depth, minimum sample split,

and purity decrease threshold. By methodically varying these

Deviance Loss =
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settings, the process effectively mimicked a systematic grid search, a
common technique used in machine learning to identify the best
parameter combinations for enhancing model accuracy.

e Number of Estimators: This parameter determines how
many individual decision trees are used in the Gradient
Boosting Classifier. Increasing the number of estimators
typically improves performance but also raises the risk of
overfitting. In my fine-tuning, I explored a range of values
to find an optimal balance that maximized classification
accuracy  without  compromising  the  model’s
generalizability.

e Maximum Tree Depth: The maximum depth of each
decision tree controls the complexity of the model. A
deeper tree can capture more intricate patterns in the data,
but it may also lead to overfitting. Through the tuning
process, I tested various depths to ensure that the model
could adequately learn the underlying structures of the
light curves while maintaining robustness against noise.

e Minimum Sample Split: This parameter specifies the
minimum number of samples required to split an internal
node in the decision tree. By adjusting this value, I could
control how sensitive the model was to fluctuations in the
data. Lower values allowed for more splits and potentially
more detailed decision boundaries, while higher values
enforced more generalization.

e Purity Decrease Threshold: This threshold determines
the minimum reduction in impurity required to create a
split in the decision tree. Fine-tuning this parameter
enabled me to balance between creating too many splits
(which could lead to overfitting) and too few (which could
result in underfitting).

Throughout the 105 cycles, each adjustment was
monitored for its impact on classification performance across a
variety of transient event classes. The iterative process allowed me to
systematically evaluate how changes in hyperparameters influenced
the model’s ability to accurately classify different types of transient
events, from supernovae to rare events
like Tidal Disruption Events (TDEs).

By carefully adjusting these parameters and observing the
corresponding  performance metrics, I achieved significant
improvements in classification accuracy. The refined model
demonstrated enhanced predictive capabilities, effectively capturing
the complexities of the light curves associated with each transient
event class. This optimization process not only improved the model’s
performance but also provided valuable insights into the
relationships between hyper parameters and model outcomes,
informing future research and development efforts.

Results and Discussion

The RNN-VAE model, paired with the Gradient Boosting Classifier
(GBC), was trained and tested on the Photometric LSST
Astronomical Time-series Classification Challenge (PLAsTiCC)
dataset (Kessler et al., 2019). The model achieved an overall accuracy
of 89%, an AUC-ROC score of 0.94, and an average precision, recall,
and F-1 score of 0.89, demonstrating strong discriminative
performance across a wide range of transient classes.

Class-Specific Performance:
To provide a detailed evaluation of the model's
effectiveness, precision, recall, and Fl-score
recalculated for each transient class (Figure 4). Given the
imbalanced dataset, these metrics offer more meaningful
insights than accuracy alone. The following analysis covers
the updated performance metrics for each class:

Active Galactic Nuclei (AGN):
The model achieved a precision of 0.88, recall of 0.89, and
an Fl-score of 0.88 for AGN. Misclassifications were
minimal, indicating that the model effectively
distinguished AGNs from other classes. The use of
advanced feature extraction could further enhance
performance.

Calcium-Rich Transients (CaRTs):
The model performed well for CaRTs, achieving a
precision of 0.93, recall of 0.94, and an Fl1-score of 0.93.
This strong performance suggests that the model
successfully captured the distinct characteristics of CaRTs,
despite their limited representation in the dataset.

Eclipsing Binaries (EBs):
The model accurately classified EBs, achieving a precision
of 0.96, recall of 0.94, and an F1-score of 0.95. The model’s
effectiveness in capturing the periodic patterns typical of
EBs indicates its robustness in handling cyclic events.

Intermediate-Luminosity Optical Transients (ILOTs):
The model demonstrated high performance for ILOTs,
achieving a precision of 0.96, recall of 0.95, and an F1-score
of 0.95. Misclassifications were minimal, suggesting that
the model captured the distinct characteristics of ILOTs
effectively.

M-Dwarf Flares:
The model exhibited strong performance in classifying
M-Dwarf Flares, with precision, recall, and F1-score all at
0.96. The model’s high performance is attributed to the
short-lived flaring behavior of M-Dwarfs, which is easily
identifiable in photometric data.

Mira Variables:
The model showed strong performance for Mira Variables,
achieving precision, recall, and Fl-score of 0.95 each. This
performance highlights the model’s ability to effectively
capture the distinct characteristics of Mira Variables.

Pair-Instability Supernovae (PISN):
The model exhibited high performance for PISN,
achieving precision of 0.98, recall of 0.99, and an F1-score
of 0.98. The high scores indicate that the model
successfully differentiated PISN from other supernova
classes.

RRLyrae Variables (RRL):
The model achieved strong performance for RRLyrae
Variables, with precision, recall, and F1-score all at 0.95.
The model's effectiveness in identifying the periodic
variations typical of RRLyrae demonstrates its robustness
in handling periodic events.

Type I Superluminous Supernovae (SLSN-I):
The model demonstrated strong performance in classifying
SLSN-1, achieving precision of 0.92, recall of 0.94, and an

were
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Fl-score of 0.93. The model effectively identified the
high-luminosity patterns characteristic of SLSN-I, with
occasional misclassifications due to similarities with other
supernova classes.

Type Ia Supernovae (SN Ia):
The model achieved a precision of 0.68, recall of 0.61, and
an Fl-score of 0.64 for SN Ia. Misclassifications were
frequent with SN Iax and SN II, primarily due to
overlapping early-phase light curve characteristics.
Incorporating additional data or feature extraction
techniques could improve performance.

Type II Supernovae (SN II):
The model showed moderate performance for SN II,
achieving a precision of 0.64, recall of 0.61, and an F1-score
of 0.62. Misclassifications primarily occurred with SN Ia,
indicating similar early brightness characteristics. Further
refinement in feature extraction could improve
classification accuracy.

Type Ia-91bg Supernovae (SN Ia-91bg):
The model performed well for SN Ia-91bg, achieving a
precision of 0.90, recall of 0.94, and an Fl-score of 0.92.
The high scores suggest that the model successfully
distinguished this subtype from other supernovae.

Type Iax Supernovae (SN Iax):
The model performed well for SN Iax, achieving a
precision of 0.85, recall of 0.86, and an Fl-score of 0.85.
Misclassifications with SN Ia were common, suggesting
that further refinement of features could improve
differentiation.

SNIbc (Type Ib/c Supernovae):
The model performed well for SNIbc, achieving a precision
of 0.81, recall of 0.82, and an Fl-score of 0.81. The
balanced performance suggests that the model successfully
captured the characteristics of SNIbc, although further
improvements in recall could enhance accuracy.

Tidal Disruption Events (TDEs):
The model performed well in classifying TDEs, achieving a
precision of 0.90, recall of 0.93, and an Fl-score of 0.91.
The model effectively captured the unique features of
TDEs, such as their sharp rise and gradual decay.

muLens-Single:
The model achieved high performance for muLens-Single,
with precision of 0.96, recall of 0.99, and an Fl-score of
0.97. The model effectively captured the features of
gravitational microlensing events, demonstrating its
capability to handle rare transient classes.

Overall, the RNN-VAE model, paired with the GBC,
demonstrated strong performance across a broad range of transient
classes, as indicated by the precision, recall, and F1-scores. While the
model excelled in handling imbalanced classes like TDEs and CaRTs,
further refinement is needed to improve the classification of
overlapping classes, particularly SN Ia, SN Iax, and SN II.
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Figure 4: This histogram provides a visual comparison
of the classes against each other.

Confusion Matrix Analysis:

The confusion matrix (Figure 5) provided insights into the model’s
strengths and weaknesses across all 16 classes (Pasquet et al., 2018).
While the diagonal elements showed high accuracy for most classes,
the highest misclassification rates occurred between SN Ia and SN II,
as well as between SN Iax and SN Ia. This suggests that while the
model performs well with distinct classes, it struggles with classes
that have overlapping photometric features. Enhancing the feature
extraction process or incorporating additional data could reduce
these errors.
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Figure 5: This confusion matrix compares the true and
predicted labels of the data set against each other. Ideally,
a confusion matrix appears as a dark, diagonal line. Note:
created by student researcher.

Handling Class Imbalance:

Class imbalance was a significant challenge during model training, as
common classes were more prevalent than rare ones (Boone, 2019).
To address this, oversampling and class-weight adjustments were
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used. These strategies improved recall for underrepresented classes
but introduced a slight increase in false positives, particularly for
classes with similar features (Kessler et al., 2019). Future iterations
could further refine these methods to improve the balance between
precision and recall.

ROC and AUC-ROC Curve:

An average AUC-ROC curve (Figure 6) was generated for all 16
transient classes, providing a comprehensive evaluation of the
model’s overall performance (Hlozek et al., 2020). With an average
AUC-ROC score of 0.94, the model demonstrated robust
discriminative ability across classes. Averaging the AUC-ROC scores
simplified performance comparisons and facilitated a clear
assessment of the model’s effectiveness in distinguishing transient
types, even those with similar light curve features (Villar et al., 2019).

Comparison with Baseline Models:

The RNN-VAE + GBC model was compared against baseline
models (Figure 7) used in the original PLAsTiCC competition, such
as Random Forests, Support Vector Machines (SVMs), and
Convolutional Neural Networks (CNNs) (Pasquet et al., 2018). The
RNN-VAE + GBC showed significant improvements:

e AUC-ROC: The model achieved an average AUC-ROC
score of 0.94, outperforming baseline models, which
averaged between 0.87-0.89.

e DPrecision and Recall: For well-represented classes, the
RNN-VAE + GBC surpassed baseline models by 5-10% in
precision and recall. For rare classes like TDEs and CaRTs,
the model improved precision and recall by 10-15% over
the baselines.

e Reduced Misclassifications: The hybrid architecture
allowed for better handling of complex decision
boundaries, reducing misclassifications, particularly among
supernova subclasses
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Figure 6: The Receiver Operating Characteristic (ROC)
Curve shows the relationship between the false and true
positive rate, demonstrating the discrimination ability of
the model. This ROC curve demonstrates the
micro-averages of each class. Note: created by student
researcher.

Limitations:
Despite the promising results of the RNN-VAE + Gradient Boosting
Classifier model, several limitations need to be addressed:

e Overlapping Light Curve Characteristics: One of the
main challenges observed was the misclassification between
transient classes with similar light curve features, such as
Type Ia (SN Ia) and Type Iax supernovae. The model
sometimes struggled to differentiate these classes due to
their overlapping photometric features, particularly in the
early stages of their light curves. This limitation indicates
that additional distinguishing features, such as spectral
data, could improve classification accuracy.

e Handling Noisy Data: While the RNN-VAE architecture
includes mechanisms to handle incomplete data, it remains
sensitive to noise and distortions in light curves. In cases
where data quality was compromised (e.g., due to low
signal-to-noise ratios or gaps in observations), the
reconstruction of light curves retained some distortions,
which  affected  classification  accuracy.  Future
improvements could involve advanced denoising methods
or integrating attention mechanisms to better focus on
cleaner data segments.

e Computational Complexity: The combined RNN-VAE
and Gradient Boosting Classifier —architecture is
computationally intensive, requiring significant processing
power for training and inference. This presents challenges
for scaling the model to larger datasets or deploying it in
real-time settings. Optimizations like model pruning,
quantization, or distributed computing could help address
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this limitation, making the model more efficient without
sacriﬁcing accuracy.

e Class Imbalance Effects: Although the model effectively
handled class imbalance through oversampling and
class-weight adjustments, these techniques introduced a
slight increase in false positives for certain classes with
overlapping characteristics. This trade-off highlights the
need for more sophisticated strategies, such as synthetic
data generation through Generative Adversarial Networks
(GANSs), to balance recall and precision without increasing
misclassifications.

e Generalization to New Data: While the model
demonstrated strong performance on the PLAsTIiCC
dataset, its generalization to new, unseen datasets remains
uncertain. Variations in telescope sensitivity, observational
conditions, or transient event characteristics could impact
model performance. Additional training with more diverse
datasets could improve robustness and generalizability.
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Figure 7: The confusion matrices showcase the
pseudo-confusion matrices of the top three submissions
of the Kaggle contest. Note: This figure is adapted from
HlozZek et al. 2020.

Future Work:
To address these limitations and further enhance the model’s
performance, several future directions are proposed:

e Incorporating Spectral Data: Integrating spectral data
alongside photometric data could improve feature
extraction, particularly for distinguishing between similar
transient classes (Boone, 2019).

e Attention Mechanisms: Adding attention mechanisms
to the RNN-VAE architecture could enhance feature

learning by focusing on the most relevant temporal
patterns in the light curves (Villar et al., 2019).

e Advanced Augmentation: Utilizing advanced data
augmentation techniques, such as synthetic light curve
generation via Generative Adversarial Networks (GAN:S),
could help balance the dataset and provide more training
samples for rare classes (Rezende et al., 2014). Hybrid
Models: Exploring hybrid models that combine RNN-VAE
with other algorithms, such as XGBoost or Random
Forests, could offer complementary strengths in handling
imbalanced datasets and improving decision boundaries.

e Recal-Time Optimization: Developing a lightweight
version of the model, using techniques like pruning or
quantization, could reduce computational demands and
enable faster inference for real-time applications (Pasquet et
al,, 2018).

o Ensemble Variations:

Investigating ensemble variations like stacking or bagging
could improve classification accuracy and robustness,
especially for classes with overlapping features. By pursuing
these directions, the model can be further refined to
enhance its classification accuracy, robustness, and
adaptability to the evolving demands of real-time
astronomical surveys.

Conclusion

This study presents an effective approach for classifying transient
astronomical events, combining a Recurrent Neural Network
Variational Autoencoder (RNN-VAE) with a Gradient Boosting
Classifier (GBC). The hybrid model achieved strong performance,
with an overall accuracy of 89% and an AUC-ROC score of 0.94,
surpassing traditional methods in precision and recall, particularly
for complex events like Tidal Disruption Events (TDEs) and
Calcium-Rich Transients (CaRTs).

The findings highlight the potential of deep learning
models to manage imbalanced datasets and noisy, real-time data.
Unlike baseline models, which struggled with overlapping light
curve features, the RNN-VAE + GBC demonstrated resilience in
distinguishing between classes, including ambiguous supernova
subclasses. This capability not only improves classification accuracy
but also facilitates confident identification of both common and rare
phenomena, pushing the boundaries of automated event analysis.

The model’s scalability and adaptability make it promising
for next-generation astronomical surveys, such as the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time (LSST). However,
challenges remain, such as distinguishing between classes with
overlapping characteristics and reducing sensitivity to noisy data.
Future work should focus on integrating spectral data, attention
mechanisms, or advanced augmentation techniques to enhance
accuracy and robustness.

In conclusion, this research represents a significant
advancement in automated transient classification. With further
refinement, the hybrid model could play a crucial role in processing
vast astronomical datasets, improving real-time discovery and
understanding of dynamic cosmic events.
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