
In this study, we applied Algebraic Topology techniques to extract information about the shape of data and 
applied these insights to the research problem of video compression. Specifically, we applied a computational 
tool known as Persistent Homology to point-cloud data sets and extracted insights on the data from the 
induced barcodes. We generalized results from a study of the local behavior of spaces of natural images 
by Carlsson et al [1] to the study of videos. To this end, we considered an ambient space of 81-dimensional 
points containing arrangements of 3 x 3 patches of pixels extracted from the frames within a video. We 
developed a computational model for the high-contrast dense sub-manifolds of this point cloud and 
found that these sub-manifolds have the topological properties of a connected bouquet of spheres. The 
reduction of dimension to a bouquet of spheres could have potential applications for video compression.

Introduction
Topology is the study of properties of spaces and homology is a tool 
that mathematicians use to characterise the shape of a space. Algebraic 
Topology is a branch of mathematics that requires background 
knowledge in subjects including Groups, Rings, and Fields as well as 
Metric Spaces, Topological Spaces, and Analysis. It works by assigning 
algebraic invariants, such as a group, to topological spaces. There are 
a number of ways of manipulating point cloud data to transform the 
data into a representative topological space. Recently, Carlsson et al 
[1] at Stanford University have developed a computational software 
called Plex [2] that enables efficient computations on point cloud 
data, including calculations of Persistent Homology and barcodes. 

The algebraic invariant in Persistent Homology, called Betti 
numbers, can be thought of as identifying the shape of the data. 

For instance, if a point cloud is in the shape of a circle, Persistent 
Homology would identify that as a 1-dimensional hole in R^2 as 
shown in Figure 1. In higher dimensions, there may be n-dimensional 
holes or spheres embedded in the data. In addition to holes, 
Persistent Homology is well known for a large class of objects and 
these characterizations may be used to better understand the shape 
of the data. For instance, objects like the Klein Bottle shown in Figure 
2 are amongst a vast database of objects for which the homology is 
well understood.

In this section, we give a brief introduction to Persistent 
Homology and barcodes largely following the Math Review from 
a JavaPlex tutorial [2] and online paper [3]. Readers interested 
in Algebraic Topology should refer to Armstrong [4] and to 
Zomorodian and Carlsson [5] for more details on Persistent 
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Figure 1. Given a high-dimensional point cloud, it is often 
difficult to know if linear statistics can be applied. For 
instance, in this shape the linear trendline would be a 
misleading representation of the dataset. On the other 
hand, Persistent Homology would characterize this data 
with one 1-dimensional hole.
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Figure 2. The Klein Bottle is 2-dimensional surface which 
can be embedded in 4-dimensional space or higher. The 
shape may be captured in R^3 as well but then the self-
intersection is necessary and adding another dimension 
creates the Klein Bottle proper without self-intersection.
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Homology.

Simplicial Complexes
In a topological analysis, we first replace a set of data points with 
a family of simplicial complexes to convert the point cloud into a 
topological space. An abstract simplicial complex is given by the 
following data.

• A set Z of vertices or 0-simplices
• For each k ≥ 1, a set of k-simplices σ = [z0, z1, ..., zk], where 

zi  ε Z.
• Each k-simplex has k+1 faces obtained by deleting one of 

the vertices. The following membership property must be 
satisfied: if σ is in the simplicial complex, then all faces of σ 
must be in the simplicial complex.

We think of 0-simplices as vertices, 1-simplices as edges, 2-simplices 
as triangle faces, and 3-simplices as tetrahedrals.

Homology
Betti numbers describe the homology, which one can think of as 
hols, of a simplicial complex X. The value Bettik, where k ε N, is equal 
to the rank of the kth homology group of X. Bettik can be thought of as 
giving the number of k-dimensional holes and Bettik is the number of 
connected components. For instance, the circle has a shape described 
by Betti0 = 1 and Betti1 = 1. In Z/2Z, the Klein Bottle has a shape 
described by Betti0 = 1 and Betti1 = 2, Betti2 = 1.

When one works with a point cloud of data, there is often noise 
embedded in the dataset. For instance, large amounts of financial 
data, readings from sensors, and pixels from images, all contain some 
amount of noise due to a variety of factors. Standard homology 
of a simplicial complex does not offer a way to deal with that noise.  
Persistence and barcodes, whose definitions rely on filtered simplicial 
complexes, are rigorous responses to this problem.

Filtered Simplical Complexes
A filtration on a simplicial complex X is a collection of sub-complexes 
{X(t)|t  R} of X such that X(t)  X(t’) whenever t ≥ t’. The filtration 

value of a simplex σ  ε X is the smallest t such that σ  ε X(t). There are 
many ways one can generate a filtered simplicial complex, for instance 
by introducing a metric. We start with a vertex z0  for X(0) and, define 
X(t) as all vertices and edges in the larger simplicial complex that are a 
distance at most t away from  z0. 

Persistent Homology and Barcodes
Given a filtered simplicial complex, those topological features which 
persist over a significant parameter range of t are considered as signal 
while short-lived features are noise. Barcodes show holes on an 
interval, with short intervals corresponding to potential noise and 
longer intervals corresponding to topological features that persist. 
Betti intervals help describe how the homology X(t) changes with t. 
A k-dimensional Betti interval, with endpoints [tstart,tend], corresponds 
roughly to a k-dimensional hole that appears at filtration value tstart < 
t < tend  and closes at the value tend. This can be viewed in the form of a 
barcode graph, as shown in Figure 3.

Using Algebraic Topology to Compress Optical Images

Summary of Optical Image Study
In the paper On the Local Behavior of Natural Images [1], Dr. Carlsson 
et al showed that a large subset of 9-dimensional data from natural 
images lies on the surface of a Klein Bottle, as observed through the 
“three circle” model (see p. 8-9 of [1] for details). In the paper The 
Ring of Algebraic Functions on Persistent Barcodes [6], this result was 
extended with the goal of compressing storage of optical photos. In 
this study, we verify the findings in [1] on a different set of images 
and generalize the approach to videos.

Procedure for Image Analysis
Carlsson et al [1] performed their analysis on photos from a database 
of images constructed by H. van Hateren [7]. In our study, we 
randomly select different optical photos from a private photo library 
to determine whether or not the results continue to hold. Given the 
different set of photos, we follow the steps taken in [1]:

Step 1: Randomly select approximately 50,000 size 3 x 3 patches 
of pixels from a set of unconnected grayscale images in the database. 
Each 3 x 3 patch corresponds to a 9-dimensional vector x where x = 
(x1,x2,...,x9) = [I11,I12,I13,121,I22,...,I33] ε R9 where Ii,j is the intensity of the 
Ii,jth pixel.

Step 2: Take the natural logarithm of each coordinate to obtain 
x = (logx1,logx2,...,logx9) ε R9.  According to Weber’s Law, there is 
an inverse relationship between ambient illumination and human 

sensitivity to light. Therefore, the ratio of  is is constant for a wide 
range of luminances (see [8] for more details).

Step 3: Compute the D-norm of each vector to obtain a 
measure of contrast of a patch. The D-norm is calculated by 
summing the differences between the vertically and horizontally 
adjacent neighbors in a 3 x 3 patch and then taking the square root. 
The D-norm is defined in this way because it is commonly believed 
that regions of photos with high contrast convey the most significant 
content of a scene (p. 3 [8]). If the 9-dimensional patch is x, the 
D-norm is given by  where D is a positive definite symmetric 
matrix shown below (see [8] for more details on derivation). For 
instance, to obtain the 5th row of the matrix in Figure 4, we take (x5 - 
x2) + (x5 - x4) + (x5 - x6) + (x5 - x8) = 4x5 - x2 - x4 - x6 - x8. 

Figure 3. This is an example of a barcode sequence for a 
point cloud corresponding to a Klein Bottle from figure 2, 
which confirms that the Betti numbers are Betti0 = 1 and 
Betti1 = 2, Betti2 = 1. The short barcodes are noise.
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Step 4: Select the patches with a D-norm in the top T percent of 
the entire sample. This is done to maintain the high contrast patches 
since they follow a different distribution than low-contrast patches 
and contain the most important information about an image (p. 3 
[8]). The resulting point cloud is denoted XT. 

Step 5: Subtract from each vector the average of its coordinates, 
to get x = (x1 - , x2 - ,...,x9 - ) where  = ∑x1. This reduces the 
dimension from nine to eight because the sum of the new points will 
always be zero, meaning if we know eight of the values, the ninth 
one is determined. Next, divide by the D-norm to normalize the 
selected vectors. This makes each vector have a unit length so that 
they all lie on a unit sphere in R8. Note that the unit sphere is given 
by the equation  = 1. 
Therefore, knowing seven of the coordinates determines the eighth. 
Hence, the point cloud lies on a 7-dimensional sphere in R8.

Step 6: Filter out the outlier points in the remaining point 
cloud using the kth nearest neighbor density function pk(x). Select p 
percent of the points whose Euclidean distance to their kth nearest 

neighbor are smallest. This gives a dense subset of the point cloud 
denoted by XT(k,p). A small choice of k results in a local density 
estimate while a larger k value provides a more global estimate.

Step 7: Use the resulting dense point cloud XT(k,p) as input for 
topological analysis. This involves running JavaPLEX to create the 
filtered simplicial complexes and find the corresponding persistent 
homology and barcodes described in Section 1 for the point cloud. 
Examining the barcodes will show patterns or submanifolds in the 
dense point cloud XT(k,p).

Results for Image Analysis
We found that the barcode representation of persistent homology in 
Figure 8 as well as the 2-dimensional cross sections (Figures 9-11) 
corroborate the results from On the Local Behavior of Natural Images 
([1], p. 5-8) when run on a random assortment of optical images 
including Figures 5-7 and more.

Discussion for Image Analysis
These results and their corresponding homology aligns well with the 
study by Carlsson et al [1]. In particular, we also observed the three 
circles in the (e1, e2) plane, (e1, e3) plane, and (e1, e5) plane of 
the Three Circle Model of the Klein Bottle. This indicates that their 
conclusion that the high contrasting and dense sets of the original 
patches lie largely on the surface of a Klein Bottle may apply to other 
datasets beyond the Van Hateren database. This conclusion makes 
the compression of images more efficient since the dense subset lies 
on a 4-dimensional shape rather than a point cloud in 9 dimensions 
[6], potentially allowing up to a 50% reduction of storage on dense 
subsets.

Using Algebraic Topology to Compress Optial Videos 
Procedure for Video Analysis
For the video project, a similar method was followed with a few 
key differences. The main difference is that a video is a collection of 
frames or pictures that are taken in linear time and are consequently 
similar to neighboring frames. To address this difference, we assign 
consecutive frames to groups and look for areas of large variance or 
contrast in each group. The steps for the method are detailed below:

Step 1: Process the video in grayscale and divide all of the scenes 
in the video into groups of nine consecutive frames. For videos with 
a frame rate of 30 frames per second, as used in this study, nine frames 
corresponds to approximately 330 milliseconds of video footage.

Step 2: Construct a point cloud by randomly picking 900 3 x 
Figures 5, 6. Sample optical images from the database.

Figure 7. Barcode results from optical image analysis.
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Figure 8. Representations of the shape of data from two different cross sections for optical images with k=15, p=20% 
and T=10%, X0.1(15, 0.2). These two views are part of the Three Circle Model.

Figure 9. A representation of the shape of data from a third 
cross section for optical images with k=15, p=20% and 
T=10%, X0.1(15, 0.2). This is the third part of the Three Circle 
Model.

Figure 10. A representation of the shape of the data for 
optical images with k=300, p=3%, and T=10%, X0.1(300, 
0.03). This shows the four dense corners of the circle.

3 patches of pixels in the same location across all nine frames in the 
group. As in the picture study, take the natural logarithm of each 
coordinate of the 3 x 3 patch to obtain a 9-dimensional vector x, where 
x = (x1,x2,...,x9) = [I11,I12,I13,121,I22,...,I33] ε R9. By considering the 3 x 3 
patches from all nine frames in a group, obtain points in R81.

Step 3: Calculate the D-norm for each point by averaging the 
D-norms of the nine 9-dimensional vectors from each frame in the 
group. If the standard deviation of the D-norms from the group is 
small, then the contrast in that region of the group is small and should 
be eliminated. Therefore, the point is kept provided that the standard 
deviation among the nine D-norms is larger than a specified threshold 
value to ensure that there is significant change within the group itself.

Step 4: In addition to including patches where there is high 
variation among the nine frames from step 3, we select the patches 
with a D-norm in the top T percent of the entire sample to produce 
the point cloud XT. This ensures that we consider areas of high contrast 
within the individual frame.

Step 5: Subtract from each vector the average of its coordinates 

to reduce the dimension from 81 to 80. Next, divide by the D-norm 
to normalize the selected vectors.  This makes each vector have a unit 
length so that they all lie on a unit sphere in R80. Note that the unit 
sphere is given by the equation   = 1. Hence, the 
point cloud lies on a 79-dimensional sphere in R80.

Step 6: Filter out the outlier points in the remaining point cloud 
using the kth nearest neighbor density function pk (x). Select p percent 
of the points whose Euclidean distance to their kth nearest neighbor 
are smallest. This gives us a dense subset of the point cloud denoted by 
XT(k,p). A small choice of k results in a local density estimate while 
a larger k value provides a more global estimate. Because we have 
many points in high dimensions, finding the kth nearest neighbor is 
computationally expensive and is an active area of research. The brute 
force approach runs in O(NDk) where N is the size of the training 
set, D is the dimension of each point, ie 79, and k is the number of 
neighbors to take. We use the KDTree algorithm from the SKLearn 
package in SciPy. This is a C package that is available within Python 
and is very efficient as it runs in O(log N) for searching.
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Step 7: Run a topological analysis on the resulting dense point cloud 
XT(k,p) to look for patterns or submanifolds through an examination of 
the barcodes. Visualize the shapes using 2-dimensional cross sections 
with Python’s matplotlib.

Results for Video Analysis

We obtained the following results on a grayscale video. See Figures 
11-15.
Discussion for Video Analysis

The persistent barcodes corresponding to dense subsets XT(k, 
p) of a point cloud obtained from video footage appears to lie on a 
surface that is topologically homeomorphic to a bouquet of spheres. 

Figure 11. These are the barcode results of the analysis. Since there is only one 
interval in dimension 0, this means that the surface is connected. Note that there 
are no holes in dimension 1 and there are a number of distinct holes in dimension 2. 
2-dimensional holes are topologically equivalent to spheres. Therefore, the barcodes 
suggest a shape called a “bouquet of spheres” with the number of intervals n in the 
second dimension being the number of spheres attached to a common point.

Figure 12. Two representations 
of bouquets of spheres where n = 
3 and 4.

Figure 13. Representations of the data from an optical video with k=15, p=10%, and T=20%, X0.2(15, 0.1).

Figure 14. Representation of the data from an optical 
video with k=15, p=10%, and T=20%, X0.2(15, 0.1).

Figure 15. Representation of the data from an optical 
video with k=300, p=10%, and  T=20%, X0.2(300, 0.1).
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The bouquet of spheres is a surface for which the homology is well 
understood with holes only in dimension 2. Each of the spheres in 
the bouquet is a 2-dimensional surface. By preprocessing the video 
frames, one can potentially transform each pixel in the original 
81-dimensional space to a 2-dimensional point on an appropriate 
sphere. For instance, one could map an 81-dimensional object to a 
3-dimensional object, the first component of which identifies which 
sphere from the bouquet it lands on while the other two components 
specify the location on the sphere. Since this transformation may 
be performed on a dense subset of the video, there is significant 
potential for compression of data. The next steps in this study would 
be to repeat the analysis on additional video footage to confirm the 
shape of dense subsets and also to define and test a transformation 
for compressing the data without losing image quality. 

Conclusion
In this study, we applied Algebraic Topology to gather information 
about the shape of data and used these insights on the research 
problem of the local behavior of natural videos. We found that the 
persistent barcodes corresponding to the high-contrast and dense 
subset of the original 81-dimensional point cloud appeared to lie 
on a surface that is homeomorphic to a connect bouquet of spheres, 
which is a topological surface whose homology is well understood. 
The lower dimensional results could be potentially useful for video 
compression just as the resulting Klein Bottle shape from the 
study of local behavior of natural images by Carlsson et al [1] was 
used for the compression of images. This application of Algebraic 
Topology shows the great potential in the field for new discoveries 
and approaches to important research problems.
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