
Introduction
The ability to model rhythmic outputs given arrhythmic inputs has
significant implications in neuroscience, robotics, and medicine.
Central Pattern Generator (CPG) networks are a vastly important
yet little understood region of reinforcement learning (RL). Existing
baselines for locomotive tasks fail to explicitly provide rhythmic
intuitions to RL agents.
	 In RL, the agent makes decisions based on a policy, which
is a mapping from states to actions. During training, the model learns
the mapping that will maximize reward. The standard policy network
used when modeling locomotive tasks is the Multilayer Perceptron
(MLP) [7, 9, 10]. OpenAI uses an MLP of two hidden layers and
64 hidden units as a baseline (MLP-64). This simple neural network
learns to model tasks of moderate complexity, but fails to generate
rhythmic output without rhythmic input [12].
	 While the MLP models global control relatively well, recent
work has shown that explicitly modeling local control in addition
to global control improves performance [5, 12]. [12] introduces
the Structured Control Net, which outperforms the standard MLP
across many environments. The SCN architecture is comprised
of a linear module for local control and a nonlinear module for
global control (in [12], an MLP-16), the outputs of which sum to
produce the policy action. We use this baseline (SCN-16) for our
benchmarks.
	 Previous work has explored the application of Recurrent
Neural Networks (RNNs) to the central pattern generation task [15,
16]. RNNs maintain a hidden state that is updated at each timestep
and allows RNNs to produce context-informed predictions based
on previous inputs [6]. The vanilla RNN allows inputs and previous
hidden states to flow between time-states freely and can provide
more context to the action policy than the MLP and SCN can,

since both only have access to information at the current timestep.
This RNN architecture has many limitations, including loss of
information over long time sequences, vanishing and exploding
gradients, and complexity of parallelization [6]. We also explore
the efficacy of variations to the vanilla RNN intended to mitigate
these shortcomings, including Long Short-Term Memory (LSTM)
[3, 8] and Gated Recurrent Units (GRU) [17], and provide results
on the detrimental effect of increased RNN complexity on our RL
environments.
	 In this paper, we combine the intuition behind SCNs
and RNNs to exploit the advantages of modeling global and local
control and of invoking global context at each timestep. We adopt
the separation of linear and nonlinear modules from [12], which
has been shown to improve performance by learning local and
global interactions. We also adopt the vanilla RNN as our nonlinear
module, which models global interactions more effectively than a
MLP. We experimentally demonstrate that this architecture brings
together the benefits of both linear, nonlinear, and recurrent policies
by improving training sampling efficiency, final episodic reward, and
generalization of learned policy, while learning to generate actions
based on prior observations. We further validate our architecture
with competitive results on simulations from OpenAI MuJoCo,

Central Pattern Generators (CPGs) are biological neural circuits capable of producing coordinated rhythmic
outputs in the absence of rhythmic input. As a result, they are responsible for most rhythmic motion in living
organisms. This rhythmic control is broadly applicable to fields such as locomotive robotics and medical
devices. In this paper, we explore the possibility of creating a self-sustaining CPG network for reinforcement
learning (RL) that learns rhythmic motion more efficiently and across more general environments than the
current Multilayer Perceptron (MLP) baseline. Recent improvements in CPG modeling introduce the Structured
Control Net (SCN), which maintains a standard MLP as the nonlinear module for global control but adds a linear
module for local control [12]. SCNs are able to perform well on standard RL metrics, but struggle to produce
coordinated locomotion as they are unable to capture time-dependent context. Here, we show that sequential
architectures such as Recurrent Neural Networks (RNNs) model CPG-like behavior more effectively. Combining
previous work with RNNs and SCNs, we introduce the Recurrent Control Net (RCN), which consists of a linear
module for local control and an RNN as the nonlinear module for global control. We find that RCNs match
and exceed the performance of baseline MLPs and SCNs across all environment tasks, confirming existing
intuitions for RNNs on locomotive tasks and demonstrating the promise of SCN-like structures in control tasks.

Recurrent Control Nets as Central Pattern
Generators for Deep Reinforcement Learning

VINCENT LIU, ADEMI ADENIJI, NATHANIEL LEE, JASON ZHAO
STANFORD UNIVERSITY

N
atural Sciences and Engineering

RECURRENT CONTROL NETS51

Figure 1. Structured Control Net architecture, adapted
from [12].

trained with the Evolution Strategies (ES) optimization algorithm
[9, 13, 4].

Related Work
MLPs have previously been used to attempt modeling of rhythmic
control tasks. The intuition is that the nonlinear fully-connected
architecture is an effective function approximation. Although MLPs
can generate high episodic rewards on many MuJoCo tasks, they
often converge to locomotive behaviors that are jerky and unintuitive
to motion.

Structured Control Nets
[12] demonstrates that enhancements can be made to the simple
MLP model and yield boosts in performance across many
environments. The SCN architecture learns local and global control
separately. To model local interactions, the linear module is simply
a linear mapping from the observation space to the action space. To
model global interactions, the nonlinear module is a MLP, comprised
of linear mappings as well as nonlinearities, giving it the ability to
learn more complex interactions.
	 These interactions are specific to locomotion tasks: the
agent needs to learn global patterns but also local interactions and
movements specific to a task. Intuitively, the explicit modeling of
local control is helpful because locomotive actions tend to depend on
immediate prior actions. Although the SCN does not model cyclic
actions, as it produces outputs given the current observations only,
learning local interactions can provide more informative context
than strictly learning global interactions. Therefore, we leverage the
principle of separate control modules in our architecture

Recurrent Neural Networks
	 RNNs model time sequences well by maintaining a hidden
state as a function of priors [6]. Traditionally, RNNs have been
intensively used in natural language processing to model sequence
prediction by including previous context. Therefore, to leverage the
ability to condition current observations on past ones, RNNs have also
been explored loosely in RL for quadruped environments. However,
RNNs have not been generalized to general locomotive tasks and still
remain relatively specific to quadruped-based locomotion tasks [16,
15]. While RNNs are inherently subject to a number of gradient and
memory problems, there have been a number of modifications to
the vanilla RNN architecture to address these problems. We explore
some gated RNN variations in our experiments, but empirically
opt for the vanilla architecture and will explain the intuition behind
doing so later in this paper. (See Appendix A for a comprehensive
description of effective RNN architectures.)

Experimental Setup

To work with locomotive tasks, we used OpenAI Gym [2], a
simulated physics environment for RL, and ran our models on Multi-
Joint dynamics with Contact (MuJoCo) tasks [14]. We used the
MuJoCo ‘-v2’ environments, which were the latest versions at the
time of our experiments.
	 The Gym environment effectively serves as a wrapper to
the MuJoCo tasks. At each timestep, the Gym environment returns
an observation, which encodes the agent’s state (i.e. joint angles, joint
velocities, and environment state). The policy takes this observation
as input and outputs an action to be executed by the agent. In cyclic
fashion, the environment returns the action, reward, and subsequent
observation to the policy. Over many episodes and timesteps, the
policy learns how to traverse the environment by maximizing the
rewards of its actions.

Evolution Strategies
We used a population size per iteration of 20, a sigma noise of 0.1,
and a learning rate of 0.01. We annealed the learning rate constantly
throughout training with a decay factor of 0.999. We also used an
epsilon-greedy policy with an initial random exploration rate of 1.
We linearly annealed this probability to 0 over 1 million timesteps.

Recurrent Control Net
We built upon the concept of separate linear and nonlinear modules
from [12] and designed our Recurrent Control Net (RCN) in a
similar fashion. Our linear module is identical to that of the SCN
[12], but our nonlinear module is a standard vanilla RNN with
hidden size 32. Intuitively, the linear module provides local control
while the nonlinear module provides global control. However, unlike
the MLP used in SCN-16 [12], the RNN learns global control with
access to prior information encoded in its hidden state. We used this
architecture (RCN-32) as our baseline in experiments.
	 In our experiments, we compared the RCN-32 to a vanilla
RNN of hidden size 32 (RNN-32) to test the efficacy of the extra
linear module. To reduce the number of trainable parameters for ES,
we removed all bias vectors in all models.

Evaluation
We used OpenAI’s MLP-64 model and the SCN-16 outlined in [12]
as baselines for experimental comparison. We evaluated a model’s
efficacy by its final reward after 10 million timesteps rather than
the rate of convergence. Across all MuJoCo environments, we find
that the RNN-32 matches or exceeds both baselines (see Figure 3).
We also notice that the RCN-32 consistently improves upon the
RNN-32. We only show the results across the Walker2d, Swimmer,
Humanoid, and Half-Cheetah environments as they best represent
locomotive tasks (as opposed to Humanoid-Standup and Reacher,
for example) and provide the most interesting training curves across
all models (as opposed to the Ant environment, in which all models
converge to negative rewards).
	 From our experimentation with various recurrent
structures, we make several interesting observations. The recurrent
structure seems to be inherently conducive to modeling locomotive
tasks because its hidden state explicitly encodes past observations,
whereas an MLP does so implicitly. We desire this explicit encoding
because it facilitates learning of patterns in sequential observations.
We also found that the increase in model complexity past a certain
threshold is detrimental to ES’s randomized training process.
Additionally, explicit modeling of linear and global interactions

Vol. 18 | Spring 2019 52

Figure 2. Recurrent Neural Network architecture

N
at

ur
al

 S
ci

en
ce

s
an

d
En

gi
ne

er
in

g

with linear and nonlinear modules consistently improves model
performance.

Gated Information Flow
In all our trials with ES optimization, we noticed that recurrent
architectures with gated information flow (GRUs, LSTMs) struggled
in training (see Figure 5). We believe that since ES is a random
optimizer, it struggles to optimize models with more parameters.
A more complex model introduces more local optima, which may
cause ES to converge prematurely. Additionally, since MuJoCo tasks
are relatively simple and low-dimensional, enhanced memory is
unnecessary and the learning of gates in training only burdens the
optimization process.
	 The ES algorithm is inherently hampered by its gradient-
free approach. Because it updates weights with random noise,
models with more parameters are subject to higher overall noise
variance per iteration. This can cause complex models to fail to
converge entirely (see Figure 5). However, with simple architectures,
we see early convergence in episodic reward (compared to the same
models trained with different algorithms). As such, we anticipate that
GRUs and LSTMs may achieve higher rewards with an optimization
algorithm like PPO (Proximal Policy Optimization, a gradient-based
optimizer [11]), where extra parameters from information gates are
not heavily penalized.

Linear Control
The RCN-32 consistently outperformed the RNN-32. This finding is

consistent with [12], which shows the efficacy of introducing a linear
component in addition to the nonlinear component (see Figure 3).
This tiered approach accounts both for immediate information
provided per observation and for longer-term patterns. As we have
mentioned before, individual actions in locomotive tasks are heavily
conditioned on immediate observations. The separate linear module
allows for a larger emphasis on local information.
	 Local control is balanced by the RNN, which is responsible
for global control. The hidden state is a complex series of nonlinear
mappings of past observations, which gives the RNN access to
global information. The addition of the linear module to the
nonlinear module allows the entire architecture to learn local and
global interactions. While the increase in performance is sometimes
marginal, the SCN-16 similarly improved the MLP-64.

Incorporating Biases
We also experimented with incorporating biases into the RCN.
Doing so immediately decreased performance across all tasks,
sometimes even below baseline performances (see Figure 4). We
believe that this is because the inclusion of biases burdened the
optimizer in training without providing any real value to what the
model learns. Just as the gated RNN variations struggled in training,
adding parameters to the RCN resulted in higher noise variance per
ES iteration. Another possible explanation is the simplicity of the
MuJoCo environments, which may not require the additional bias
vector to successfully model the task.

RECURRENT CONTROL NETS53

Figure 3. Episodic rewards for MuJoCo environments on baselines MLP-64, SCN-16, RNN-32, and
RCN-32 using ES optimization. Average of 5 median trials from 10 total trials.

Figure 4. Episodic rewards on MuJoCo environments with RCN-32, with and without biases using
ES optimization. Average of 5 median trials from 10 total trials

Figure 4. Episodic rewards on MuJoCo environments with RNN-32, GRU-32, and LSTM-32 using ES
optimization. Average of 5 median trials from 10 total trials.

N
atural Sciences and Engineering

Conclusion
We conclude that RNNs model locomotive tasks effectively.
Furthermore, we conclude that the separation of linear and nonlinear
control modules improves performance. The RCN combines the
benefits of both concepts, learning local and global control and
patterns from prior sequential inputs. We also note the detriment
of increasing model complexity with information gates, though
this is probably due to MuJoCo task simplicity and the ES training
algorithm. Because ES updates weights randomly, additional gates
create more local optima that ES has to overcome.
	 Since our models have only been trained with the ES
algorithm, future investigations would involve exploring the
performance of RCNs with an algorithm such as PPO. Additionally,
recent practices in natural language processing have successfully
replacing recurrent layers with convolutional layers [1]. It would be
interesting to explore whether convolution could replace the RNN
module for sequential modeling. We hope that our findings open up
further investigation into the usage of RCNs for these applications.

Appendix A: Recurrent Architectures
For more context, this section covers in-depth the fundamental
recurrent architectures upon which we built our models: Recurrent
Neural Networks (RNNs), Gated Recurrent Units (GRUs) and
Long Short-Term Memories (LSTMs).

Recurrent Neural Network
The vanilla RNN maintains an internal hidden state to compute
future actions, which serves as a memory of past observations. This
simple architecture allows all inputs and hidden states to flow freely
between timesteps. Standard RNN update equations are below.

Gated Recurrent Unit

A GRU improves upon the vanilla RNN by learning to retain
context for the next action by controlling the exchange of inputs and
previous hidden states between timesteps [17]. GRUs have a reset
gate r after the previous activation to forget part of the previous state
and an update gate u decides how much of the next activation to use
for updating.

Long Short-term Memory
An LSTM learns a “memory” of important locomotion context
via input, forget, and output gates [3, 8]. The input gate i regulates
how much of the new cell state to keep, the forget gate f regulates
how much of the existing memory to forget, and the output gate o
regulates how much of the cell state should be exposed to the next
layers of the network.

Acknowledgements

This research on modeling central pattern generators originally
began as a class project for CS 229, Machine Learning. We thank
our TA advisor, Mario Srouji, for giving us insight on his Structured
Control Net [12].

References
[1] Eric Battenberg, Jitong Chen, Rewon Child, Adam Coates,
Yashesh Gaur Yi Li, Hairong Liu, Sanjeev Satheesh, Anuroop
Sriram, and Zhenyao Zhu. Exploring neural transducers for end-
to-end speech recognition. In Automatic Speech Recognition and
Understanding Workshop (ASRU), 2017 IEEE, pages 206– 213.
IEEE, 2017.
[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.
[3] Yang-Hun Cha, Dang-Yang Lee, and In-Kwan Lee. Path
prediction using lstm network for redirected walking. In 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pages
527–528. IEEE, 2018.
[4] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel
Lehman, Kenneth Stanley, and Jeff Clune. Improving exploration in
evolution strategies for deep reinforcement learning via a population
of novelty-seeking agents. In Advances in Neural Information
Processing Systems, pages 5032–5043, 2018.
	

Vol. 18 | Spring 2019 54

Equation 1: Vanilla Recurrent Neural Network update
equations, where h(t), o(t), x(t) denote the hidden

state, output (action), and input (observation) vectors,
respectively, at timestep t.

Equation 2: Gated Recurrent Unit update equations,
where h(t), c(t, and x(t) denote the hidden state, cell state,
and input (observation) vectors, respectively, at timestep
t. The output is produced with a linear mapping of h(t) to

the output (action) vector.

Equation 3: Long Short-Term Memory update equations,
where h(t), c(t), and x(t) denote the hidden state, cell state,
and input (observation) vectors, respectively, at timestep
t. The output is produced with a linear mapping of h(t) to

the output (action) vector.

N
at

ur
al

 S
ci

en
ce

s
an

d
En

gi
ne

er
in

g

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.
[6] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical
review of recurrent neural networks for sequence learning. arXiv
preprint arXiv:1506.00019, 2015.
[7] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages
1928– 1937, 2016.
[8] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional
and lstm recurrent neural networks for multimodal wearable activity
recognition. Sensors, 16(1):115, 2016.
[9] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and
Ilya Sutskever. Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.
[10] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. Trust region policy optimization. In International
Conference on Machine Learning, pages 1889–1897, 2015.
[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.
[12] Mario Srouji, Jian Zhang, and Ruslan Salakhutdinov. Structured
control nets for deep reinforcement learning. arXiv preprint
arXiv:1802.08311, 2018.
[13] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel
Lehman, Kenneth O Stanley, and Jeff Clune. Deep neuroevolution:
genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567, 2017.
[14] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 5026–5033. IEEE, 2012.
[15] Duc Trong Tran, Ig Mo Koo, Yoon Haeng Lee, Hyungpil Moon,
Sangdeok Park, Ja Choon Koo, and Hyouk Ryeol Choi. Central
pattern generator based reflexive control of quadruped walking
robots using a recurrent neural network. Robotics and Autonomous
Systems, 62(10):1497–1516, 2014.
[16] Duc Trong Tran, Ig Moo Koo, Gia Loc Vo, Segon Roh, Sangdeok
Park, Hyungpil Moon, and Hyouk Ryeol Choi. A new method in
modeling central pattern generators to control quadruped walking
robots. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/
RSJ International Conference on, pages 129–134. IEEE, 2009.
[17] Yuan Wang, Kirubakaran Velswamy, and Biao Huang. A novel
approach to feedback control with deep reinforcement learning.
IFAC-PapersOnLine, 51(18):31– 36, 2018.

RECURRENT CONTROL NETS55

N
atural Sciences and Engineering

