
Introduction
The ability to model rhythmic outputs given arrhythmic inputs has 
significant implications in neuroscience, robotics, and medicine. 
Central Pattern Generator (CPG) networks are a vastly important 
yet little understood region of reinforcement learning (RL). Existing 
baselines for locomotive tasks fail to explicitly provide rhythmic 
intuitions to RL agents.
	 In RL, the agent makes decisions based on a policy, which 
is a mapping from states to actions. During training, the model learns 
the mapping that will maximize reward. The standard policy network 
used when modeling locomotive tasks is the Multilayer Perceptron 
(MLP)  [7, 9, 10]. OpenAI uses an MLP of two hidden layers and 
64 hidden units as a baseline (MLP-64). This simple neural network 
learns to model tasks of moderate complexity, but fails to generate 
rhythmic output without rhythmic input [12].
	 While the MLP models global control relatively well, recent 
work has shown that explicitly modeling local control in addition 
to global control improves performance [5, 12]. [12] introduces 
the Structured Control Net, which outperforms the standard MLP 
across many environments. The SCN architecture is comprised 
of a linear module for local control and a nonlinear module for 
global control (in [12], an MLP-16), the outputs of which sum to 
produce the policy action. We use this baseline (SCN-16) for our 
benchmarks.
	 Previous work has explored the application of Recurrent 
Neural Networks (RNNs) to the central pattern generation task [15, 
16]. RNNs maintain a hidden state that is updated at each timestep 
and allows RNNs to produce context-informed predictions based 
on previous inputs [6]. The vanilla RNN allows inputs and previous 
hidden states to flow between time-states freely and can provide 
more context to the action policy than the MLP and SCN can, 

since both only have access to information at the current timestep. 
This RNN architecture has many limitations, including loss of 
information over long time sequences, vanishing and exploding 
gradients, and complexity of parallelization [6]. We also explore 
the efficacy of variations to the vanilla RNN intended to mitigate 
these shortcomings, including Long Short-Term Memory (LSTM) 
[3, 8] and Gated Recurrent Units (GRU) [17], and provide results 
on the detrimental effect of increased RNN complexity on our RL 
environments.
	 In this paper, we combine the intuition behind SCNs 
and RNNs to exploit the advantages of modeling global and local 
control and of invoking global context at each timestep. We adopt 
the separation of linear and nonlinear modules from [12], which 
has been shown to improve performance by learning local and 
global interactions. We also adopt the vanilla RNN as our nonlinear 
module, which models global interactions more effectively than a 
MLP. We experimentally demonstrate that this architecture brings 
together the benefits of both linear, nonlinear, and recurrent policies 
by improving training sampling efficiency, final episodic reward, and 
generalization of learned policy, while learning to generate actions 
based on prior observations. We further validate our architecture 
with competitive results on simulations from OpenAI MuJoCo, 
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Figure 1. Structured Control Net architecture, adapted 
from [12].



trained with the Evolution Strategies (ES) optimization algorithm 
[9, 13, 4].

Related Work 
MLPs have previously been used to attempt modeling of rhythmic 
control tasks. The intuition is that the nonlinear fully-connected 
architecture is an effective function approximation. Although MLPs 
can generate high episodic rewards on many MuJoCo tasks, they 
often converge to locomotive behaviors that are jerky and unintuitive 
to motion.

Structured Control Nets
[12] demonstrates that enhancements can be made to the simple 
MLP model and yield boosts in performance across many 
environments. The SCN architecture learns local and global control 
separately. To model local interactions, the linear module is simply 
a linear mapping from the observation space to the action space. To 
model global interactions, the nonlinear module is a MLP, comprised 
of linear mappings as well as nonlinearities, giving it the ability to 
learn more complex interactions.
	 These interactions are specific to locomotion tasks: the 
agent needs to learn global patterns but also local interactions and 
movements specific to a task. Intuitively, the explicit modeling of 
local control is helpful because locomotive actions tend to depend on 
immediate prior actions. Although the SCN does not model cyclic 
actions, as it produces outputs given the current observations only, 
learning local interactions can provide more informative context 
than strictly learning global interactions. Therefore, we leverage the 
principle of separate control modules in our architecture

Recurrent Neural Networks
	 RNNs model time sequences well by maintaining a hidden 
state as a function of priors [6]. Traditionally, RNNs have been 
intensively used in natural language processing to model sequence 
prediction by including previous context. Therefore, to leverage the 
ability to condition current observations on past ones, RNNs have also 
been explored loosely in RL for quadruped environments. However, 
RNNs have not been generalized to general locomotive tasks and still 
remain relatively specific to quadruped-based locomotion tasks [16, 
15]. While RNNs are inherently subject to a number of gradient and 
memory problems, there have been a number of modifications to 
the vanilla RNN architecture to address these problems. We explore 
some gated RNN variations in our experiments, but empirically 
opt for the vanilla architecture and will explain the intuition behind 
doing so later in this paper. (See Appendix A for a comprehensive 
description of effective RNN architectures.)

Experimental Setup

To work with locomotive tasks, we used OpenAI Gym [2], a 
simulated physics environment for RL, and ran our models on Multi-
Joint dynamics with Contact (MuJoCo) tasks [14]. We used the 
MuJoCo ‘-v2’ environments, which were the latest versions at the 
time of our experiments.
	 The Gym environment effectively serves as a wrapper to 
the MuJoCo tasks. At each timestep, the Gym environment returns 
an observation, which encodes the agent’s state (i.e. joint angles, joint 
velocities, and environment state). The policy takes this observation 
as input and outputs an action to be executed by the agent. In cyclic 
fashion, the environment returns the action, reward, and subsequent 
observation to the policy. Over many episodes and timesteps, the 
policy learns how to traverse the environment by maximizing the 
rewards of its actions.

Evolution Strategies
We used a population size per iteration of 20, a sigma noise of 0.1, 
and a learning rate of 0.01. We annealed the learning rate constantly 
throughout training with a decay factor of 0.999. We also used an 
epsilon-greedy policy with an initial random exploration rate of 1. 
We linearly annealed this probability to 0 over 1 million timesteps.

Recurrent Control Net
We built upon the concept of separate linear and nonlinear modules 
from [12] and designed our Recurrent Control Net (RCN) in a 
similar fashion. Our linear module is identical to that of the SCN 
[12], but our nonlinear module is a standard vanilla RNN with 
hidden size 32. Intuitively, the linear module provides local control 
while the nonlinear module provides global control. However, unlike 
the MLP used in SCN-16 [12], the RNN learns global control with 
access to prior information encoded in its hidden state. We used this 
architecture (RCN-32) as our baseline in experiments.
	 In our experiments, we compared the RCN-32 to a vanilla 
RNN of hidden size 32 (RNN-32) to test the efficacy of the extra 
linear module. To reduce the number of trainable parameters for ES, 
we removed all bias vectors in all models.

Evaluation
We used OpenAI’s MLP-64 model and the SCN-16 outlined in [12] 
as baselines for experimental comparison. We evaluated a model’s 
efficacy by its final reward after 10 million timesteps rather than 
the rate of convergence. Across all MuJoCo environments, we find 
that the RNN-32 matches or exceeds both baselines (see Figure 3). 
We also notice that the RCN-32 consistently improves upon the 
RNN-32. We only show the results across the Walker2d, Swimmer, 
Humanoid, and Half-Cheetah environments as they best represent 
locomotive tasks (as opposed to Humanoid-Standup and Reacher, 
for example) and provide the most interesting training curves across 
all models (as opposed to the Ant environment, in which all models 
converge to negative rewards).
	 From our experimentation with various recurrent 
structures, we make several interesting observations. The recurrent 
structure seems to be inherently conducive to modeling locomotive 
tasks because its hidden state explicitly encodes past observations, 
whereas an MLP does so implicitly. We desire this explicit encoding 
because it facilitates learning of patterns in sequential observations. 
We also found that the increase in model complexity past a certain 
threshold is detrimental to ES’s randomized training process. 
Additionally, explicit modeling of linear and global interactions 
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Figure 2. Recurrent Neural Network architecture

N
at

ur
al

 S
ci

en
ce

s 
an

d 
En

gi
ne

er
in

g



with linear and nonlinear modules consistently improves model 
performance.

Gated Information Flow
In all our trials with ES optimization, we noticed that recurrent 
architectures with gated information flow (GRUs, LSTMs) struggled 
in training (see Figure 5). We believe that since ES is a random 
optimizer, it struggles to optimize models with more parameters. 
A more complex model introduces more local optima, which may 
cause ES to converge prematurely. Additionally, since MuJoCo tasks 
are relatively simple and low-dimensional, enhanced memory is 
unnecessary and the learning of gates in training only burdens the 
optimization process.
	 The ES algorithm is inherently hampered by its gradient-
free approach. Because it updates weights with random noise, 
models with more parameters are subject to higher overall noise 
variance per iteration. This can cause complex models to fail to 
converge entirely (see Figure 5). However, with simple architectures, 
we see early convergence in episodic reward (compared to the same 
models trained with different algorithms). As such, we anticipate that 
GRUs and LSTMs may achieve higher rewards with an optimization 
algorithm like PPO (Proximal Policy Optimization, a gradient-based 
optimizer [11]), where extra parameters from information gates are 
not heavily penalized.

Linear Control
The RCN-32 consistently outperformed the RNN-32. This finding is 

consistent with [12], which shows the efficacy of introducing a linear 
component in addition to the nonlinear component (see Figure 3). 
This tiered approach accounts both for immediate information 
provided per observation and for longer-term patterns. As we have 
mentioned before, individual actions in locomotive tasks are heavily 
conditioned on immediate observations. The separate linear module 
allows for a larger emphasis on local information.
	 Local control is balanced by the RNN, which is responsible 
for global control. The hidden state is a complex series of nonlinear 
mappings of past observations, which gives the RNN access to 
global information. The addition of the linear module to the 
nonlinear module allows the entire architecture to learn local and 
global interactions. While the increase in performance is sometimes 
marginal, the SCN-16 similarly improved the MLP-64.

Incorporating Biases
We also experimented with incorporating biases into the RCN. 
Doing so immediately decreased performance across all tasks, 
sometimes even below baseline performances (see Figure 4). We 
believe that this is because the inclusion of biases burdened the 
optimizer in training without providing any real value to what the 
model learns. Just as the gated RNN variations struggled in training, 
adding parameters to the RCN resulted in higher noise variance per 
ES iteration. Another possible explanation is the simplicity of the 
MuJoCo environments, which may not require the additional bias 
vector to successfully model the task.
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Figure 3. Episodic rewards for MuJoCo environments on baselines MLP-64, SCN-16, RNN-32, and 
RCN-32 using ES optimization. Average of 5 median trials from 10 total trials.

Figure 4. Episodic rewards on MuJoCo environments with RCN-32, with and without biases using 
ES optimization. Average of 5 median trials from 10 total trials

Figure 4. Episodic rewards on MuJoCo environments with RNN-32, GRU-32, and LSTM-32 using ES 
optimization. Average of 5 median trials from 10 total trials.
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Conclusion
We conclude that RNNs model locomotive tasks effectively. 
Furthermore, we conclude that the separation of linear and nonlinear 
control modules improves performance. The RCN combines the 
benefits of both concepts, learning local and global control and 
patterns from prior sequential inputs. We also note the detriment 
of increasing model complexity with information gates, though 
this is probably due to MuJoCo task simplicity and the ES training 
algorithm. Because ES updates weights randomly, additional gates 
create more local optima that ES has to overcome.
	 Since our models have only been trained with the ES 
algorithm, future investigations would involve exploring the 
performance of RCNs with an algorithm such as PPO. Additionally, 
recent practices in natural language processing have successfully 
replacing recurrent layers with convolutional layers [1]. It would be 
interesting to explore whether convolution could replace the RNN 
module for sequential modeling. We hope that our findings open up 
further investigation into the usage of RCNs for these applications.

Appendix A: Recurrent Architectures
For more context, this section covers in-depth the fundamental 
recurrent architectures upon which we built our models: Recurrent 
Neural Networks (RNNs), Gated Recurrent Units (GRUs) and 
Long Short-Term Memories (LSTMs).

Recurrent Neural Network
The vanilla RNN maintains an internal hidden state to compute 
future actions, which serves as a memory of past observations. This 
simple architecture allows all inputs and hidden states to flow freely 
between timesteps. Standard RNN update equations are below.

Gated Recurrent Unit 

A GRU improves upon the vanilla RNN by learning to retain 
context for the next action by controlling the exchange of inputs and 
previous hidden states between timesteps [17]. GRUs have a reset 
gate r after the previous activation to forget part of the previous state 
and an update gate u decides how much of the next activation to use 
for updating.

Long Short-term Memory
An LSTM learns a “memory” of important locomotion context 
via input, forget, and output gates [3, 8]. The input gate i regulates 
how much of the new cell state to keep, the forget gate f regulates 
how much of the existing memory to forget, and the output gate o 
regulates how much of the cell state should be exposed to the next 
layers of the network.
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Equation 1: Vanilla Recurrent Neural Network update 
equations, where h(t), o(t), x(t) denote the hidden 

state, output (action), and input (observation) vectors, 
respectively, at timestep t.

Equation 2: Gated Recurrent Unit update equations, 
where h(t), c(t, and x(t) denote the hidden state, cell state, 
and input (observation) vectors, respectively, at timestep 
t. The output is produced with a linear mapping of h(t) to 

the output (action) vector.

Equation 3: Long Short-Term Memory update equations, 
where h(t), c(t), and x(t) denote the hidden state, cell state, 
and input (observation) vectors, respectively, at timestep 
t. The output is produced with a linear mapping of h(t) to 

the output (action) vector.
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