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Sometimes, the safest thing people can do is flee from danger. However, what if they are in a room with dozens, or hundreds, 
of other people when that danger arises? How do they get out? And when architects designed the room–whether an intimate 
theater, concert hall, or sprawling convention center–did they think about how to optimally allow people to exit in an emergency?

In the following paper we establish a standard for evaluating a given room’s safeness: We use a model-predicted evacuation 
time resulting from a simulated terror crisis as our safety metric. Then, we develop algorithmic methodologies to optimize room 
design, and propose a regulatory framework for ensuring future construction projects protect building occupants. 

Our safety-assessment algorithm first takes in a prospective floor-plan design. Then, we computationally run a series of ran-
domized terror scenario simulations, keeping record of the amount of “time”–represented with a conceptual, particle physics-
based proxy–that it takes for the population (e.g. a group of theater-goers) to get out. This “time” is averaged across 8 simulations 
to minimize variance, producing a metric we term “Time to Exit” (TTE). This TTE is then inputted into an iterative statistical process 
which adjusts the parameters of the floor-plan (e.g. exit-door placement) in order to create a modified design that better mini-
mizes the room’s TTE score. By evaluating and creating rooms that ensure short evacuation times, we address a societally relevant 
public health issue: Terror crisis response.

1  Introduction

In the modern era, it is rare for a theater in the United States to catch fire and cause hundreds of people to die. One hundred 
years ago, this particular tragedy was all too common, but after decades of legislation, updated fire codes, and improved building 
materials, we have largely put a stop to theater fires. All of this regulation has directly translated into huge public health gains: 
After all, designing better buildings makes people safer.

Today, we face a tragedy of similar scale: Mass shootings motivated by individuals who can do extraordinary damage. Hun-
dreds of Americans die each year in gun-fueled rampages, an increasing proportion of them children when accounting for recent 
school-centered shootings [Cha17]. As this public health issue continues to escalate, it becomes clear that we need a policy solu-
tion that keeps people safe. Perhaps, the most obvious answer is gun control, but this is a highly contentious issue in the United 
States and is politically intractable. The next logical step may be to think about establishing mental health screening, identifying 
potentially unstable individuals, and providing them therapy to help them become more mentally healthy, thereby stunting 
atrocities at the perpetrator-level. This seems sensical, but experts have concluded “the sorts of individuals who commit mass 
murder often are either not mentally ill or do not recognize themselves as such.” [Cha17]. Most budding, bloodthirsty killers would 
be resistant to therapy and other such interventions, because they see the outside world as the root of all their problems [Kha17]. 
In other words, while such a therapy-based approach is beneficial for the general public good–improving national mental health 
is always a great objective–it does not feasibly mitigate harms from terror-based events specifically.

A more practical solution is to think about how we design our public spaces, and to consider how we can — moving forward — 
design rooms that are intrinsically safer. Hence, we propose an objective framework for evaluating a theater’s “Time to Exit.” Note 
that in this analysis, we use the word “theater” to represent generalized enclosed places where people congregate, from conven-
tion centers to stadiums to movie theaters to classrooms. Directly defined, “Time to Exit” (TTE) is the time it would take everyone 
to evacuate a room in response to a sudden attack. If, after evaluating the TTE for a user-submitted theater design, we generate an 
improved room schematic that is modified with computationally optimized exit-placements and possesses a separate (hopefully 
lower) TTE, then we can evaluate how safe a theater currently is, and compare this to how safe it could be. The core of this algorith-
mic framework is establishing an effective model to simulate how people would flee a theater when a terrifying actor appears. To 
accomplish this simulation task, we take inspiration from chemistry, using a heavily modified version of the Metropolis algorithm 
used by chemists to simulate fluid dynamics. Our framework can model TTEs for any size of theater, any number of people, and 
any number of barriers (e.g. benches or tables) in the room. This framework can then be applied in a legislative setting, allowing 
regulatory bodies to set an acceptable threshold on how much a proposed theater design’s safety score can deviate from its re-
spective optimized design safety score, and subsequently, we can make more informed decisions when approving new construc-
tion projects.
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2  Modeling Crowd Dynamics

Given the set up of a theater, its dimensions, location of obstacles, location of exits, the initial position of the people in the the-
ater, and the position of the terror (e.g. a weapon-wielding terrorist, a bomb device, a fire, or any other stimuli that people would 
be repulsed from), how long does it take everyone to get out of the theater?

2.1  The Metropolis Method

Human behavior is notoriously multifaceted and difficult to predict, so to make this problem more approachable, we need a 
model: A system that will represent complicated crowd dynamics in a more computationally manageable way. At this point, we 
turn to chemistry for inspiration, invoking a model that predicts how randomized particles might move toward a lower potential 
equilibria along a potential field. A highly relevant topic in molecular-simulation sectors is fluid dynamics: How can we simulate 
the behavior of liquids at various temperatures, pressures, and volumes? The solution to this issue is called “Hard Sphere Simula-
tion”, where every molecule is assumed to be a sphere (or, in two dimensions, a circle), and all spheres are considered “hard” in that 
they are not allowed to overlap. Spheres are assumed to have no interaction unless they’re overlapping, in which case they have 
infinite potential. The simulation permutes all the particles in one time-step, via a symmetrical distribution on every axis. We will 
call this a “move.” To make these simulations accurately simulate reality, an acceptance criterion is applied to decide whether to 
accept a “move.” The acceptance criterion is the probability that the system moves from the old state o to the new state n. This is 
calculated using the Maxwell-Boltzmann distribution, which takes a change in potential energy for a system, and returns a prob-
ability of that change:

         (1)

         (2)

The acceptance criterion is a Bernoulli random variable that will accept a new state n, with potential energy U(n), according to 
the PDF of the Maxwell-Boltzmann distribution, at temperature T (mathematically, temperature is multiplied by the Boltzmann 
constant k, so in this paper, we will treat kT as one parameter).

Combining all these components, the Metropolis algorithm is born [FS01]. See Algorithm 1.

2.2  Extending to the Human Case

How do we connect the movement of particles in a flowing liquid to people in a movie theater? The key insight is that humans 
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are like particles. The kT value can be thought of as the level of panic in the theater: How likely people are to be confused and go 
the wrong way. The σx value is the distance people can move in a single time-step: The larger it is, the closer the simulation is to 
real time. There is, of course, a major item missing from the model we have so far described: There is no motivating force. Thus, the 
essential leap in logic is to conceive all the particles as being negatively charged. With this modification, the model prods the peo-
ple to move towards the exit. Elaborating further, the exit will be simulated by a positive point charge and the terror by a negative 
point charge. Accordingly, the negatively charged people will have lower potential (i.e. be in a more favorable state) when they are 
closer to the exit and farther away from the terror object. A negatively charged particle will be at its lowest potential when closest 
to the positively charged particle.

This requires some minimal modification to the algorithms above. Namely, the energy function will now perform the following 
calculation–if e is the vector position of the exit and t is the vector position of the terror:

         (3)

With this substitution, the Maxwell-Boltzmann acceptance criterion (Equation 2) will over time force the simulation to its lowest 
potential equilibria. In layman’s terms, the people will leave the theater. To make this model more realistic, we can account for in-
room barriers like seats, railings, walls, and columns with some further modifications. Thus, we have an system that can effectively 
simulate any theater set-up.

2.3  Extending to Multiple Exits

Our model can be extended one step further. So far, it only allows for a theater to have one exit. If we added a second or a third 
exit, there is a logical incongruity: There would be an optimal point in-between the two exits, where moving in either direction 
would cause an increase in potential (i.e. be unfavorable) that the acceptance criterion is unlikely to accept. Think about how if an 
electron had a proton on either side of it at equal distances away, the electron (here, the theoretical person) would be immobile. 
Thus, our model system would likely achieve a steady state equilibrium without everyone evacuating the theater. Some theoreti-
cal people would be paralyzed between the two exits. This is not realistic. The simplest, most efficient solution to this problem is 
to say that people are “smart.” They will know what exit is closest to them, and only experience the attractive force of that exit. This 
greatly simplifies the calculation for multiple exits, and elegantly solves the steady-state equilibria reality incongruity. To incorpo-
rate this adaption, we make a slight modification to the energy function. See Algorithm 2.
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2.4  Summary

In summary, to establish the safety-evaluation framework presented in this paper, we need the ability to simulate how people 
would flee a theater in response to a terrifying actor. To do so, we take inspiration from chemistry by using a heavily modified ver-
sion of the Metropolis fluid dynamics algorithm. We arrive at a model that estimates TTE for a theater of any size, any number of 
people, and any amount of interior barriers.

3  Runtime Optimization

Even though this algorithm is theoretically fast, there are some factors that can create extensively prolonged computational 
run-times. Currently, our algorithm runs in about 13 seconds for our test theater design (described later). For industry and gov-
ernment usage, a shorter runtime would be optimal. The improved algorithm is   for the number of people in the theater, as the 
energy calculation checks whether all people are in overlap with all other people. Runtime optimizations were implemented, 
specifically cell lists and parallelization, outlined within the supplemental appendix Section 8 at sub-header 8.3.

As Table 1 shows, these optimizations cut the runtime of a simulation by 37%.

4  Score Functions

4.1  Minimum Simulations for Accurate Approximations

At this point, we have two more major problems to solve. These issues are parallel to each other, and the solution to the first is 
necessary to solve the second:  

1.  First: How to set the number of iterations n and the other simulation parameters, kT and σx, for optimal runtime. 
2.  Second: How to find the optimal exit position given a theater (dimensions, barriers, initial position of people). 

On a deeper level, these problems are conceptually parallel. In the following two subsections, “Runtime Score” and “Exit Score,” 
one will notice many similarities. After all, both problems involve running the simulation and getting an accurate, stable value 
(i.e. the runtime for problem 1, and the number of accepted iterations it takes for the theater to empty out for problem 2) from 
the output. Because the simulation is a Monte Carlo algorithm, the values it produces will vary as random variables. So the task is 
to figure out how few times the simulation can be run to get a result with at least a 95% certainty of being within 99% of the true 
expected value of the value of interest. We can apply a method developed by Psutka and Psutka [PP15] (the co-authors share the 
same last name) to test the accuracy of sampling from a function like this to see that an average of 8 samples will give the 95% 
certainty of being within 99% of the true expected value. The mathematical derivation of this “8” value is elucidated in our supple-
mental appendix Section 8 at sub-header 8.2.

4.2  Runtime Score

We must start by optimizing the amount of time the program itself takes to run. Having the minimum simulations, 8, for an 
accurate estimate allows us to write our objective function for runtime. This function is incredibly simple: Given a kT and σx, it will 
hold all other aspects of the simulation constant, run the simulation 8 times (each time collecting the runtime), fit a distribution 
with the maximum likelihood estimators, and finally, return the expected runtime from that distribution.

4.3  Exit Score

Similar to above, we can write an objective function for an exit vector. This is the most important part of the framework, as here, 
we determine how to best position the exits to minimize evacuation time, so that people can safely flee in an emergency. The 
public health benefits are self-explanatory: Saving lives is the ultimate good. Given a vector of exit positions e , the function will 
hold all other aspects of the simulation constant, run the simulation 8 times (each time collecting the number of frames until the 
theater is empty), then fit a distribution with the maximum likelihood estimators, and finally, return the expected number from 
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that distribution. The output of this function is the Time To Exit (TTE) metric.

5  Optimization

Everything described up to this point has been independent of the theater being examined. Now, the theoretical algorithms 
described above will have to be run for each theater to optimize the n, kT and σx for the given theater, and then, we will use these 
parameters to minimize the runtime. Subsequently, we optimize the exit positions and get the ideal TTE for a given theater. The 
main complication surrounding this real-life application is actually performing these optimizations. Unlike the above theoretical 
scenarios in Section 4 where it was relatively simple to derive a likelihood function, the objective functions defined in Sections 4.2 
and 4.3 for runtime and exit score seem impossible to elucidate in this more reality-centric scenario. This means the framework re-
quires a different type of optimization, gradient free optimization, which can work without being able to take the derivative of the 
factor being optimized. The framework utilizes two different forms of gradient free optimization, the Nelder-Mead method and 
Bayesian Optimization, which are used to optimize runtime and exit position, respectively. To delve into the heavy mathematics of 
this method, see supplement Section 8.4.

6  Results

To understand how our framework could be used in a regulatory setting to deter-
mine a theater design’s safety rating (in terms of optimal exit placements to minimize 
TTE), we examine a simple theater as an example.

The theater shown in Figure 1 contains all the information the framework needs to 
evaluate the exit position: The dimensions of the theater, the positioning of all interior 
barriers, and an initial exit position (assumed to be the “reasonable” exit position nec-
essary for the runtime optimization).

6.1  Runtime Optimization

The framework starts by setting the maximum number of iterations for each 
simulation n. It does this by simulating the initial exit position 8 times, fitting a 
distribution, and selecting a minimum number of iterations that will mean 95% of 
good simulations will complete. For this theater, that n=346055 .

Using this value of  n, the framework then optimizes runtime by running the simplex algorithm on the runtime score function. 
The initial simplex is set with kT = 0.05 and σx =0.05. These initialization values were determined experimentally to promote good 
simplex convergence for this problem. The process of optimization takes approximately one hour, and cuts the simulation runtime 
by 57%.

6.2  Exit Position Optimization

The framework then moves on to optimizing the exit position. For an in-depth mathematical view of how this process works 
and how the Bayesian Optimization algorithm explores the space of possible exit positions, see supplemental Section 8.3. The final 
exit position the Bayesian process achieves is illustrated in Figure 2.

7  Conclusion

In conclusion, we examine how this framework can be integrated into a legislative setting, utilizing it to create regulations that 
address one of the greatest public health harms currently faced by the United States: Mass shootings and other similar terror events. 
Given the exit score function and the optimal exit position, we can use a easily understandable comparison fraction (below) to 

Figure 1. This shows our simple theater example: 
There are 8 rows each seating three people, with 
two exits at the back of the theater. It might repre-
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evaluate the original design’s exit positioning with respect to the optimal design’s exit positioning, and subsequently, we can decide 
whether to proceed with construction. For our comparison fraction, we have:

       (4)

Where TTEi is the TTE for the initially submitted plan, and TTEo is the TTE for the 
optimal solution derived through the Bayesian Optimization. ∆ is the acceptability 
threshold set by a regulatory body. A reasonable ∆ might be 0.50, which would al-
low construction companies to at most reduce the safety score of a theater by 50% 
of the ideal (perhaps for cost-cutting or aesthetic reasons) and still move forwards 
with the project. In this case, the TTEi = 2730, and the TTEo = 1261, so the fraction 
evaluates to 1.165, which would likely be deemed an unacceptably high level of di-
vergence from the room’s optimally safe exit-placement design. Accordingly, we 
would give the architects this feedback, along with the optimal, computationally-
derived exit positions. Subsequently, they could reevaluate their design to be bet-
ter at keeping people safe from terror events.

Thus far, we have very specifically examined the case of optimizing exit posi-
tion to minimize evacuation time, but the beauty of this framework is that it could 
be extended to adjust every quantifiable aspect about the design of the theater: 
The spacing of the seats, the angle of the rows of seats, the number and spacing 
of aisles, etc. These all can be evaluated, modeled, optimized, and re-evaluated to 
generate a TTE-based safety-score evaluation. Obviously, in this paper, we do not 
intend to belittle the training and expertise of professional architects: There are 
many economic, aesthetic, and safety factors that go into the design of buildings. 
However, now we have the ability to specifically and quantitatively assess whether a room is easy-to-exit in the case of danger, and 
perhaps more importantly, generate a modified room design that minimizes the “Time to Exit” using a rigorous, mathematics-based 
model. Considering the clear-cut nature of this TTE score regulatory test, incorporating our threshold into the construction-focused 
legislative branches seems like a rational step in building safer new buildings. By saving lives in crisis scenarios, the ultimate goal of 
any harm mitigation initiative, our TTE-based optimization of room construction is a great boon for the field of design-based public 
health.

8  Supplemental Mathematical Appendix

8.1  Runtime Optimization

8.1.1  Cell Lists

Cell lists are a way of breaking up the simulated space into equally sized 
blocks, and then only computing interactions between particles in adja-
cent cells. This means that especially for simulations with many particles, 
the number of required calculations is significantly lower. See Figure 3. The 
framework can make use of this idea, even though the situation is not ex-
actly the same as the one Allen describes.[AT89]

The framework will similarly use cell lists to break up the simulated 
theater, but because our methodology assumes particles have no interac-
tion with each other, it doesn’t go as far the molecular dynamics cell list 
implementations. All our cell list strategy has to account for is a given particle’s interactions with other “hard” objects in the the 
cell(s)–noting that particles can be in multiple cells–that the given particle is occupying.

There’s a lot that can be pre-computed using this implementation. First, note that the barriers in the respective cells will not 
change: After all, barriers are intrinsically in a fixed position for a given room. Secondly, the cells that neighbor any given cell will 
be constant, so this can also be pre-computed. Finally, we can use pre-computation with regards to the static perimeter cells. The 
only variables within cell lists that will change are what people are occupying what cells. Refer to Algorithm 3 to see the imple-
mentation of the energy function using the framework’s modified cell list strategy.

Figure 2: This is the optimal value of the exit posi-
tion, given that the terror is at the front center of 
the theater. Logically, it makes sense: It skews to the 
back, further from where the terror is, but is other-
wise reasonably symmetric which is congruous with 
the overall symmetry of our example theater. Also, 
notice that the exits in our optimized design are 
in-line with the seating rows, thereby alleviating the 
deleterious people bunching issues caused by mov-
ing the exits completely to the back wall.

Figure 3: (Left) This diagram is what molecular dynamics 
seeks to simulate: The interaction between the particle 
of interest and all other particles. (Right) This shows what 
cell lists simulate: The interaction between the particle of 
interest, all particles in the same cell, and all particles in 
neighboring cells. [16]
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8.2  Minimum Simulations for Accurate Approximations

8.2.1  Determining Appropriate Distributions

The two variables of interest here are the runtime and 
the number of frames until the theater is empty. The first 
step to providing the accuracy above is understanding 
how these two variables vary.

From Figure 4, it is clear that both of these values vary 
as Log-Normal distributions.

8.2.2  MLE for the Log-Normal Distribution

The way the framework is going to get these proven bounds on the value of interest is by fitting the Log-Normal distribution 
for some number of samples. The next step is to derive the μ and σ2 that maximize the log-likelihood function of the Log-Normal 
distribution

         (5) 

         (6)

First, the likelihood function, given X={X1, X2, ... Xn}  , is the product of the probability densities of each Xi:

       (7)

       (8)

       (9)

Figure 4: Running the simulation 1000 times, and taking these variables, 
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Next, take the log of the Eq. (8) to get L(μ, σ2 | X):

     (10)

     (11)

     (12)

   

     (13)

     (14)

Now taking the partials, first with respect to μ:

          (15)

Setting this to zero and solving, then:

          (16)

          (17)

          (18)

Next taking the partial with respect to σ2:

        
        (19)

Setting this to zero and solving, then:

    
        (20)

        (21)

        (22)

        (23)



So the maximum likelihood estimators for the Log-Normal distribution are:

         (24)

         (25)

8.2.3  Minimum Samples for Accurate Log-Normal MLE

Using the methodology developed by Psutka and Psutka [PP15] for the normal distribution, lower bounds can be derived for 
the number of samples for a given certainty of a given confidence of accurate maximum likelihood estimates. It is relatively easy to 
adapt their methods to the Log-Normal distribution.

Expected Log-Likelihood
First, we need a way to evaluate the accuracy of a likelihood estimate. The best way to evaluate this accuracy would be to ask: 

Given the true parameters of   and  , what would the value of the log-likelihood function be? In short, the answer is the expected 
log-likelihood function. The expected log-likelihood function is defined as:

   (26)

   (27)

   (28)

   (29)

   (30)

Now with the expected log-likelihood in terms of the expectation of various functions of  , those expectations must be solved. 
Starting with the expectation of log(Xi), which is trivial, by the definition of the Log-Normal distribution:

       (31)

       (32)

Similar logic is applicable to the derivation of the expectation of  log(Xi)
2:

         (33)

         (34)
         (35)

         (36)

Returning to the expected log-likelihood function:
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    (37)

    (38)

    (39)

    (40)

Evaluating Likelihood Accuracy

Now setting aside for a moment this expected value for log-likelihood, the fraction below will motivate a means for evaluating 
the accuracy of any estimated and  :

          (41)

This fraction puts the likelihood using the maximum likelihood estimators for the Log-Normal over the expected value of the 
log-likelihood function, given the true μ and σ2. This is useful, because we now have a fraction that will range between 0 and 1, 
but that will asymptotically approach 1 as the number of samples n used in the MLE ofμ and σ2  pproaches infinity. This means the 
value β is a proxy for estimation accuracy. It is this value we will set to ensure we get within 99% of the true expected value of the 
value of interest.

Taking the log of Eq. (40) and rearranging so that we have a less than inequality we have:

      (42)
  
      (43)
  
      (44)

Minimum Samples for Accurate MLE

We will start by defining and  as the estimates resulting from i random variables in Y = {Y1, Y2, ... Yn}. We will also define Z 
= {Z1, Z2, ... Zn} where k will be a large integer.  Y and Z are drawn from the same distribution with parameters μ and σ2. 
This allows us to define:

      (45)

The estimate i*β is by simulating the above procedure. This can be seen in Algorithm 4.
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It is clear from Figure 5 that i*β - 3: Geo(p). This also makes sense. There is some probability that the MLE estimate fits the dis-
tribution well with only i samples: Each iteration we increase the number of samples, running the same experiment and stopping 
after getting a success. A geometric random variable is defined as the number of experiments before a success, so it makes sense 
that it would accurately capture this phenomenon. Here, too, we need to fit this distribution to get the value of p. It is therefore 
necessary to derive the maximum likelihood estimator for the Geometric distribution:

        (46)

        (47)

        (48)

        (49)

Figure 5: (Left) This is a histogram of i*β; the result of running Algorithm 4 with t=100000, 
k=100000, β=0.99. (Right) This is the histogram of 100,000 values drawn from the distribu-
tion fit to, using  .
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Setting the partial to zero, and solving for :

       (50)
  
       (51)

This estimates the distribution of i*β - 3 very well, as is clear from Figure 5, meaning that =0.5719 is a good estimation. Using 
this value, it is now possible to derive the minimum number of samples that will guarantee 95% certainty of being within 99% of 
the true expected value:
      (52)

      (53)

      (54)

      (55)

      (56)

This value is, of course, 3 short of the actual value, so adding three and rounding up, we conclude that 8 samples is the mini-
mum required to have 95% certainty of our MLE estimates being 99% accurate to the true distribution.

8.3  Optimization

8.3.1  Runtime

There are several assumptions that underpin the optimization of runtime. First, the optimal values for  ,  , and   are at least rela-
tively robust if not entirely independent of the exit position. Were this not true, it would be impossible to optimize these runtime 
variables. The second assumption is that we have a “reasonable” solution with which to do the optimization. This will likely be a 
human selected exit vector that does have to be completely optimal, but cannot be atrociously bad (there will always be some 
exit positions where people never leave, or would take so long to escape that it isn’t worth the simulation time). This is necessary, 
or else, it would be relatively impossible to do the runtime optimization.

Setting the number of iterations

The first value to set is  , because it will not require any gradient free optimization. It is, at this point, important to draw the dis-
tinction between this value, the runtime, and the frames until we have an empty theater. The runtime is the number of real-time 
seconds the algorithm requires to run. The frames until we have an empty theater is the number of accepted moves before all 
people have evacuated the theater. The number of iterations is the total number of moves attempted, both accepted and rejected. 
The value   is the maximum number of iterations before the simulation stops. This cutoff is necessary especially when dealing with 
non-“reasonable” solutions.

How will the framework optimize  ? It will use the now-familiar technique outlined throughout Section 4: Eight runs will be 
conducted and the total number of moves required before all people escape will be collected. The iterations vary as a Log-Normal, 
the same as runtime and frames. A distribution will be fit to this data using MLE.

Nelder-Mead

The Nelder-Mead method attempts to find a global minimum for some real-valued function over some number of variables. In 
this case, it will be minimizing the runtime score function with respect to   and  . For higher dimensional problems Nelder-Mead 
never really converges, but for the simple case of 2 variable optimization (assuming a mono-modal function), it is a very efficient 
solution.[NM65]

8.3.2  Exit Position
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For optimizing exit position, the Nelder-Mead algorithm will not work. If we are optimizing exit position for a stadium that 
holds thousands or tens of thousands, then there will be dozens of exits and Nelder-Mead will never converge. Even for a small 
number of exits, it is very unlikely exit position is a mono-modal surface: Consider a simple, symmetrical theater with two exits–
the exit score for this function is at least bi-modal, as at the optimal positions, the exits can be flipped to achieve the same peak at 
a different input point.

This means the framework must use some other gradient-free optimization algorithm, preferably one that requires minimal 
iterations, as the exit score is computationally expensive to evaluate. This leads us to Bayesian Optimization.

The way Bayesian Optimization works is by treating the objective function as a random function (note: the exit score is a ran-
dom function). If the objective is a random function, then we can place a prior over the domain of the random function. This prior 
is designed to capture our belief about the behavior of the function. The function is then evaluated for some number of initial 
randomly chosen points, and these points are used to update the prior in Bayesian fashion, generating a posterior distribution. 
This posterior distribution is then used to maximize the acquisition function in order to select the next point to evaluate.[SLA12]
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