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Abstract	
The purpose of this research is to identify the various contexts in which 
visualizations create social inequalities in the realm of big data science. In 
analyzing the visuals from two microbiome case studies, it becomes clear 
that the interplay of the visualizations conflates with the complexities of 
the datasets from which they were derived. Continuing visualization 
studies through interdisciplinary lenses will further understanding of the 
inequalities in science and society. 
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Introduction 
Gathering large datasets often introduces more questions than answers due 
to the incredible influx of multifunctional raw data. “Far better an 
approximate answer to the right question, which is often vague,” stated 
statistician John Tukey, “than an exact answer to the wrong question, 
which can always be made precise.” Is today’s science characterized by 
inaccurate simplicity or ambiguous complexity? Because of the dense, 
vague nature of big data, creating graphic representations of this data 
proves equally difficult.  

Today, visualizations of big data create both understanding as well as 
confusion among viewers. Not all interpretations are created equal and 
“not all numbers are neutral” (Boyd & Crawford, 2012). Translating big 
data collections into visualizations, interactive graphics, and images 
demands caution and a critical eye. Considerations of the audience and 
how this data is treated and portrayed may reveal deeper understandings 
about the surrounding context of big data science—its social, political, 
historical contexts—than the surface-level scientific interpretation can 
provide.  

In this paper, I will examine the types of visual representations of big 
data in two case studies related to the microbiome and analyze the modes 
in which these visuals present the data. The microbiome, literally a 
microscopic community from micro- and -biome, comprises a vast catalog 
of microbes and their genes (Ursell et al., 2012). Understanding the 
ambiguity as well as complexity of microbiome science through the tool 
of visualizations is essential to unveiling how big data can create 
inequalities. There are many themes of this paper, including, but not 
limited to, flaws in big data experimentation, complexities of racial 
profiling, quantitative representation of qualitative factors, relatability in 
science, and aggressive advancement of technology.  

Microbiome science, in particular, embodies the ambitions and 
dilemmas of mass sequencing and analysis in the age of big data science. 
Interchangeably known as metabonomics and metabolomics, microbiome 
science measures a diverse multitude of biological molecules and is 
regarded as the “most advanced downstream product” used to holistically 
study molecules (Horgan & Kenny, 2011). Deconstructing how to 
understand visualizations of microbiome science can provide a good 
model into addressing unique challenges of big data science overall 
(Jansson & Baker, 2016).  

Analysis begins with visualization studies. Understanding 
visualizations, first and foremost, allows for the framework of this paper 
to form. How, why, and when visualizations are created help gather 
insights about how the audience must come to view them. I intend to study 
two microbiome cases through a social science lens in order to 
demonstrate how science is not a standalone complex, but rather a process 
that receives influences from its own cultural and historical time frame. 
The first case study analyzes a live conference presentation on the 
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microbiome. The second case study revolves around a controversial 
project that takes place in an urban environment. Both studies not only 
reveal similarities and differences in the interpretations of their 
visualizations, but they also show how inequalities of science proxy as 
social inequalities. 

 
Visualization Process 
The investigation of visualizations in biomedical research initially requires 
a glance into the collection of works revolving around imaging practices 
and data analysis products. As end-products of big data, visualizations 
utilize specific tools useful in forming specific interpretations and 
meanings. Many scholars have looked into this understanding of the 
visualization’s performative value as enabling of a particular meaning, or 
meanings, over others, which is especially important in this paper as these 
help reinforce a certain message (Burri & Dumit, 2008; Vertesi, 2014; 
Coopmans, 2010).   

Scholars in the field of visualization studies also lead the research on 
viewing specific images that permit the audience to reach certain 
understandings through the power and persuasiveness of images (Burri & 
Dumit, 2008). This ability derives, in part, from the idea that science and 
technology have been seen to provide the highest possible level of 
objectivity—a tool for knowing truth—but only due to their respective 
societal and historical context. In contrast to today’s value in mechanical 
objectivity—societally given value in knowledge obtained from 
technological advancements—people once preferred truth-to-nature 
objectivity. This paradigm shift not only parallels the change in how 
people understand images over time but also how scientific images rely on 
cultural shifts or preferences to create representations. The anthropological 
progress of science changes in tandem with its societal values. Volumes of 
work completed in this field reveal a long-existing desire to associate truth 
with seeing the underlying meanings in visualizations (Burri & Dumit, 
2008; Beaulieu, 2001; Daston & Gallison, 2007).  

The process of viewing visualizations depends on the social, cultural, 
and historical contexts in which the visual is generated. Awareness of this 
provides experts in various disciplines greater ease in reproducing their 
own interpretations for their audiences (Vertesi, 2014; Coopmans, 2010).  
It is the “intersection of scientific imagery with popular narratives and 
culture” that molds the conversations of scientific knowledge throughout 
non-academic society (Burri & Dumit, 2008). Scholars have studied how 
the collective expertise and collaboration allow for sharing of numerous 
ideas in visual and interactive instruments, algorithms, and concepts (Burri 
& Dumit, 2008; Stevens, 2015). This theme reappears through the case 
studies in the paper as the foundation for how these images are then used 
in particular ways. 

The flexibility of visualizations to contain multiple interpretations 
creates problematic opportunities to develop different understandings of 
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subjects and objects in the arena of knowledge production. Scholars note 
the disparity between what exists in the contents of the data and what can 
be done with the data (Burri & Dumit, 2008). Decisions made in image 
post-processing stages do not depend on technical and professional 
standards alone, but again on cultural and aesthetic conventions or 
individual expertise (Burri, 2001; Frow, 2012). The ambiguous nature of 
images affects the process in which society comes to view or understand 
these big data products. 

Additionally, by defining big data images as having performative 
value, attending to visualizations as interactive also requires attention to 
the researchers’ engagement with computers and other instruments (Burri 
& Dumit, 2008). More research must be done on the deployment of 
visuals and its relationship with technological advancement. Hype in 
visual persuasiveness (using visualizations as truth) remains a crucial part 
of contemporary science authority. Because of this, contemporary visuals 
created from scientific imaging technology garner great amounts of 
approval and promotion regardless of the data’s underlying complexities 
and opaqueness (Burri and Dumit; 2008; Biteen et al., 2015). This idea 
pans out not only in the case studies discussed below, but also in the 
rhetoric of modern day scientists. 
 
Case Study 1: The Spectacular Microbiome 
In early February 2016, I attended a few seminars in UCLA’s annual 
International Symposium on Nanotechnology. Speakers from around the 
globe presented their research findings to fellow scientists and future 
sponsors alike. Most of the audience members were middle-aged and 
graying, mainly business-attired professionals. A packet that I picked up at 
the beginning of the conference doubled both as a research paper about 
nanotechnology research and as a detailed conference brochure. It may 
very well note the underlying message of this grand three-day conference.  
According to this paper, a main point of this event lies in attracting 
generous private investors and sponsors for future research projects that 
combine nanoscience technology with other fields of science. This 
conference did not focus on one discipline alone, but rather a combination 
of nanotechnology and the life sciences, physical sciences and medicine.   

A talk by Dr. Pieter Dorrestein titled “3-D Cartography of 
Microbiome Chemistry” stood out in the midst of the microbiome series of 
the conference. Prefaced by a prominent UCLA microbiology professor, 
Dr. Dorrestein spoke about visualizing microbial diversity across the body 
in “more efficient ways.” By “efficient,” he meant using newer, more 
advanced chemistry technology. He spoke briefly about utilizing mass 
spectrometry and sequencing to calculate the number of microbes in his 
sample but did not go in depth about how he chose and collected his 
samples on the human body. Before even discussing his visualizations, he 
announced his latest research projects and visions of developing new 
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algorithms and software for promising, to-be-uncovered spectrometry 
findings. 

As he began to explain his 3-D visualizations, the most striking aspect 
of his work in the presentation was the flashing neon colors on the rotating 
human models. Red, blue, green, and yellow dots clumped together in 
some body parts like the hands and mouth. Other body parts like the 
forehead and thigh showed very little color. Dr. Dorrestein called this the 
ultimate ‘spatial awareness’ as these images work to show varying 
concentrations of microbes across the body. His next few slides showed 
his research in an article. This one in particular had been on the main page 
of CNN for four weeks and even featured in a children’s book. He asserted 
that his visualizations highlight connections and relevancies about science 
research and human bodies that anyone can understand regardless of the 
complexities of studying microbiome science.  

Ending his speech, he reiterated the need for advancement in 
technologies to continue relevant research similar to what he had shown. 
The audience clapped, and no one raised any post-presentation comments 
or questions. Every other research presentation before Dr. Dorrestein’s 
had received multiple questions about clarification or future projects, yet 
the silence broke that tradition. The significant lack of questions at the 
presentation signals one of two things: all participants of the presentation 
understood the presentation or the blinking lights and rotating human 
models on the screen acted as a spectacular distraction from a complicated 
entanglement.   

 
 

 
FIGURE 1. The topographical map of representative distributions of bacteria 
from the genera Staphylococcus, Propionibacterium, and Corynebacterium, 
based on their relative amounts at each body location, for the female and 
male individuals (image from Bouslimani et al., 2015). 
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The research paper this presentation derives from hardly contains the 
same impressive features as shown at the conference. One of the most 
interesting parts of the presentation, the dynamic visualizations of 
proportions of microbes on the human body, was not present in the paper. 
Instead, the paper used two-dimensional static images that relayed only 
segments of what the media visualization showed (Figure 1). Notably, the 
researchers themselves noted that the whole body was not sampled. 
Specific pre-determined areas such as the hands, face, and feet were the 
main targeted areas of investigation (Bouslimani et al., 2015). The actual 
lack of comprehensive sampling conflicts with the full-body human 
representations of the human models in the presentation and the paper as 
those images imply that the entire body surface was sampled. Selective 
presentation of data during the viewing experience promotes to the 
audience a specific interpretation of the data from the experience of 
viewing the research’s information. This most notably reveals the ability 
of the visualization to manipulate interpretations beyond its superficial 
face value and questions the genuineness of science’s methods and 
constitution (Coopmans, 2010). Understanding the relationship between 
appearance of the tactful presentation and reality of the complex, messy 
dataset unveils a much-needed investigation into the research.   

In the sciences, neglecting to study a specific body part implies not 
only a hierarchy of body part importance but also a variety of other 
disparities. The selection of specific body parts to sample presents a 
preexisting bias in the realm of microbiome science. If future skin 
microbiome studies of other body parts are conducted, this research 
(containing no data on non-hand, face, or feet areas) may impede newer 
research due to bias and lack of data. Moreover, the reason why these 
researchers decided to collect data from hands, feet, and face only may 
originate from a non-scientific understanding of how humans acquire 
disease and illness. 

Cultural understandings of how disease is acquired may manifest in 
the form of hesitance to shake the hand of someone who just sneezed or 
can explain why some people dislike wearing shoes in their bed. The idea 
of seeing “dirt” or “sickness” physically move from object to hand, human 
to human, unnerves many. The same theory applies to the stigmatization 
of diseases in the 1980s—it was believed that any type of contact, sexual 
or non-sexual, to anyone with HIV would instantly transfer the disease to 
oneself (Francoeur & Noonan, 2004). Visualizations that pinpoint the 
identities of foreign and unknown bacteria on the body embolden 
inaccurate interpretations of a tight relationship between bacteria and 
disease (Figure 2). Unfortunately, this concept of the human body as a 
tightly-bound, individual unit does not follow current understandings of 
health in the human body. Health does not rely on the human body 
avoiding foreign objects, but relies on the intertwined relationship between 
the body and the environment (Allen, 2014). While this research seeks to 
show how unknown microbes may non-toxically coexist on the skin, the 
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connection it makes between folk understanding of disease acquisition and 
current data still enforces the prior.   

In fact, important consideration must be taken in pointing out the 
persuasive performance of these visualizations at the presentation. While 
the research papers present a static representation of a supposedly live and 
breathing subject, the dynamic images with blinking lights act just like the 
moving microbes on the body. The multimedia essence of the image 
allows for it to represent a dimension beyond spatial ones: time. The 
inclusion of time and movement mimic the natural world in which we live 
and perceive. Therefore, the movie-like images in the presentation allowed 
the audience to automatically perceive the movement of microbes. In a 
sense, these visualizations garner much power, mainly due to their close 
familiarity to human perceptions of nature (Burri & Dumit, 2008). Shown 
to a live audience, a two-dimensional graph that plots time performs 
differently from a moving video showing time passing. This push for 
replicating time-sensitive results found in nature is a repeating theme in 
Dorrestein’s work, and he frequently cites the importance of advancing 
these objective technologies (Hsu, 2013; Hsu, 2015; Bouslimani, 2014).  
This drive for newer, faster, and more precise technology also comments 
on the scientific trend of automatization. 

 

 
FIGURE 2.	Molecular and bacterial communities found to be co-localized in 
an individual (image from Bouslimani et al., 2015). 
 
 

Modern machines and technologies, such as those used in 
Dorrestein’s research, strive towards capturing realism in complex 
datasets. More frequently, interpretations from these technologies are seen 
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as objective due to the diminished presence of human interference or 
subjectivity. Thus, viewers place greater authority in such visualizations 
deriving from a mechanical or technological production, which may allow 
scientists to place value in the same modes of understanding. 
Visualizations assume the traits of objectivity and hide flaws in current 
science experimentation through the veil of simplicity and suggestion. 

 
Case Study 2: The Traveling Microbiome 
The old saying “using a subway handrail is like shaking the hands of 100 
strangers” has never been so understated in a city of now over eight 
million people. In New York City, daily exchanges involving contact 
between strangers on the streets, buildings, parks, and bodegas occur with 
similar frequencies in the underground world of subway tunnels. With 659 
miles of subway track, 468 subway stations, and 24 various subway lines, 
the Metropolitan Transport Authority boasts a daily weekday ridership of 
7,660,605 passengers (MTA, 2015). The subway is filled with people 
taking their first ride a well as people taking their daily commute home.  
Down the street or across the bridge to another borough, the subway 
system transports people both near and far, reaching destinations as far 
from Manhattan as Queens and Coney Island. As an unintended result, this 
diverse, cheap, and convenient system also disperses a plethora of bacteria 
and other microorganisms with the same vigor it carries its human 
passengers from station to station. 

A recent project of Dr. Christopher Mason at Weill-Cornell Medical 
College involving the study of New York City’s subway microbiome has 
been the focus of harsh criticism and unexpected controversy. In 2015, 
Mason launched his highly interactive site, PathoMap, based off of his 
data from collecting and identifying microbes on the surfaces of New 
York City. Expert scientists from the fields of virology and genetics, 
confounded by the results, attacked Mason’s work, and a heated debate 
regarding the validity of the data and conclusions generated in Mason’s 
project ensued. The discourse between these scientists follows the 
emergence of microbiome awareness in daily life conversations; more 
people outside of academia are familiar with the concept of the 
microbiome. The data shown via visualizations both obscures and reveals 
to create certain meanings, namely interpretations that vary from expert to 
expert. Thus, these controversies among experts segue into recurring 
issues of studying microbiome science in populations. 

Due to the large-scale nature of this project, the research team called 
for crowdsourcing, or the inclusion of people outside of the research 
laboratory, to help with the project. Researchers and interns, along with 
student volunteers from local colleges and public citizens of New York 
City, collected samples from the entire New York City MTA subway 
system in triplicate—two swabs from the station and one swab from 
within the actual train (PathoMap Research Team, 2013; Afshinnekoo, 
2015). Objects with a presumed high level of human-surface interaction, 
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such as turnstiles and kiosks, were prioritized over other objects 
depending on who collected the samples (Afshinnekoo, 2015). For the 
scientists, the preference of sampling one type of surface would allow 
them “the greatest comparability options” among the different data sets 
gathered. On the contrary, the individual preferences among the volunteers 
may have caused discrepancies in the comparability of the samples they 
collected as the surfaces they choose reflected their own interests. With 
the volunteer’s free-for-all mindset and few limitations on what they could 
collect, scientists analyzing the data neglected to ask more questions of the 
identity of collectors as a variable before beginning to compare samples. 

In the visualization result, as seen in the research graphics (Figure 3), 
the high level of microbial diversity of a subway station corresponds to a 
supposed large amount of population diversity. Elusively, the actual 
dataset hardly explains the sampling process. According to their 
interactive PathoMap, each point on the map represents one collection 
swab (Figure 4). A closer look into this graphic reveals uncertainties 
regarding the quality and accuracy of each subway’s sample. The 
sampling goal was to have at least two swabs at each station. Procedurally, 
each point on the map representing a specific swabbed location should 
cluster in a group of two or more points. Representation, as in the location 
and type of sample, plays a role in creating disruptions between the data 
and its product. The map illustrates how areas farther away from 
Manhattan have fewer than the required number of samples (Figure 4). As 
evidenced by the visualization, the study shows that more volunteers 
sampled subway stations in Manhattan than in less populated boroughs 
like Staten Island or Bronx. Even with all locations sampled, the quantity 
of samples varies location to location, and the amount of available data 
gets called into question. 
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FIGURE 3. Heatmap of the Pseudomonas genus, the most abundant genus 
found across the city (image from Afshinnekoo, 2015). 
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FIGURE 4. Comparison of amount of samples taken in Manhattan subway 
stations and samples taken in Bronx subway stations. Source data from 
pathomap.giscloud.com. 
 
 

Due to the lack of clarity in the sampling methods of Mason’s project, 
other aspects in the production and analysis of the data can also be shown 
to be overly complex. Obscurities in the experimentation and data 
processing directly affect the other results and graphics of this research. 
The most prominent and influence-heavy visualization in Mason’s data 
uses the collected DNA microbial sequences at each station location to 
link calculated ancestry with census data. Their goal was to show how 
microbiome science has the capability to identify population 
demographics (Figure 5). Because of growing ease and access to genetic 
testing, scientists have been increasingly interested in using genomics to 
provide scientific evidence for racial categorization (White & Duster, 
2011).   

Mason’s project is not exempt from trying to tie race into biology. 
The image contains three columns shown side-by-side: the genetic testing 
results, the 2010 census data, and a column showing an estimated 
statistical difference between the first two columns’ racial percentages. 
While most of the estimated ancestry shows high correlation to the census 
data, the first two columns also reveal jarring differences. The third 
column, appropriately titled “deviation,” represents the statistical 
differences between the first two columns. 
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FIGURE 5. Human Ancestry Predictions from Subway Metagenomic Data 
Mirror Census Data Using ancestry (Afshinnekoo et al., (2015). 
 
 
Unfortunately, no portion of Dr. Mason’s paper explains deviation or the 
factors that lead to it. The other images in this visualization explore the 
calculated ancestry and census data correspondence, ignoring the details 
about how “deviations” in the data arise. Close examination of the race 
data shows that high amounts of deviation (over ~25%) come from 
stations where the estimated proportion of white inhabitants are higher 
than what the census data shows (Figure 5). No exact proportions exist in 
the data or visualization, so analysis of this graphic requires 
approximations and individual interpretation of the values.    

Noticeably, the calculated ancestry column tends to underestimate the 
proportion of Hispanics in the majority of stations; however, it is difficult 
to ascertain if the black population also faces this issue. The top portion of 
the calculated ancestry chart seems to overestimate the proportion of 
blacks yet towards the bottom of the chart, with a higher percentage of 
deviation, black populations are underestimated. In the areas with higher 
deviations, the calculated proportions of whites are overestimated (Figure 
5). The deviation column utilizes a numerical value that cannot adequately 
address potentially more descriptive values—social, cultural, ethnic, or 
political issues—occurring in these locations. The preference for 
quantitative results over qualitative effects shadows the demand for a more 
holistic understanding of the resulting science and society difference.   
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Understanding how this project’s sampling works roots out its issues of 
using insufficient data to paint a picture, or in this case, generate a 
microbiome map. Not enough data has been released to fully understand 
PathoMap visualizations, yet even with the lack of labels and details, the 
images present a persuasive message. In Mason’s chosen census 
demographic data in the graphic, the subway systems near Canarsie and 
Mount Eden incorporate highly racially homozygous populations and have 
lower levels of deviation; however, these locations lack as extensive a 
swab sampling collection as stations in the heart of Manhattan (Figure 5, 
B-G). The snapshot of subway DNA data at a remarkably more diverse 
and heterozygous populated station, Penn Station, shows higher levels of 
deviation. The quality and quantity of samples taken at Penn Station 
outnumber those gathered in neighboring boroughs. 

Once again, these observations touch upon the topic of sampling, but 
more specifically the perspective and interests of volunteers collecting the 
samples. As a project relying on the effort of people outside the laboratory 
team, PathoMap needs further analysis into the identity of their volunteers. 
Sampling inequalities show through the varying quantity of submissions 
and how those outside the laboratory realm most likely do not operate with 
the same scientific mindset as those inside. How these people understand 
the PathoMap project and its technology may factor into which subway 
stations, if any at all, they swab and what they swab.    

Crowdsourcing research experiments create a boondoggle for 
scientists analyzing the collections who then have to decide whether or not 
to overlook disparities, such as sampling inequalities, in the research. 
However, aside from inexplicit sampling methods, there exists another 
disruption in comparing data from genetic ancestry tests and data from the 
census. Utilizing race as a category in any health-related science prompts a 
discussion on racial profiling in medicine and health. Ultimately, as 
PathoMap seeks to prevent permanent disease outbreaks, gain knowledge 
of bioterrorism, and manage health in the context of large populations, the 
data from this research is not immune to conversations of race in health 
(Afshinnekoo et al., 2015). In fact, “emerging genetic knowledge has the 
potential to transform contemporary notions of social coherence and group 
identity” (Brodwin, 2002). In Mason’s research, the comparison between 
expected genetic results and actual census data shows outside factors that 
work against using science to define identity. Biology and genetic testing 
may only somewhat explain the identity of populations. With carefully 
crafted graphs and maps, the researchers struggled with defining social 
constructs, like race, that appear in science. The deviations that occurred 
between calculated ancestry and census data does not solely stem from 
problematic sampling, but also from trying to measure qualitative ideas 
with quantitative data. Endeavoring to measure identity, as PathoMap 
attempted, demonstrates the difficulty of measuring race, which may have 
societal origins that may not be accounted for in microbiome sciences. 
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Conclusion	
With complex datasets found in the realm of microbiome science, it is 
easy to automatically accept convenient interpretations of visualizations.  
These extensively dense datasets form a multiplicity of interpretations 
outside a strictly molecular understanding. From attending a presentation 
on the microbiome to studying controversial cases like the New York City 
subway PathoMap, it is clear that interpreting big data visualizations, in all 
situations involving scientific research, warrants caution. 

Throughout this paper, scientific controversies and disjunctions 
appear in visualizations to show different types of inequalities in the realm 
of big data. Sparse sampling and lack of clarity in experimentation prove 
problematic in creating fluid and encompassing associations. Utilizing 
race as a category becomes an issue as racial profiling in health and 
medicine requires extensive definitions of race in order to create a 
cohesive argument. Like most genomic sciences, challenges arise when 
qualitative factors such as race are subject to quantitative representation. 
The capacity of visualizations to be persuasive comes from their 
relatability and ambiguity. Lastly, aggressive pushes for technological 
advancement reveal cultural and social shifts towards automatization. The 
conclusion from the interplay of the interactive maps and research 
visualizations illustrates the idea that images produced from complex 
datasets contain innate difficulties. These complexities dwell in the 
overwhelming nature of current microbiome science.  

Considering these limitations of big data visualizations, further 
questions must be asked about the outcome of big data. An important 
concern of microbiome science revolves around continued funding.  
Considerations of non-scientific entities come into play when applying for 
grants and funding sources. Currently, large corporations and government 
institutions in healthcare fields lead the search for solutions driven by big 
data science with private interests following closely behind (Bouslimani, 
2014; Biteen, 2015). How can the extraneous agents of science, such as 
funding, ethnics, and media, affect the way visualizations are produced 
and deployed? Should these research agendas proceed to play a major part 
in big data sciences, and how can visualizations avoid the influence of 
these politics? 

Continuing visualization studies in the realm of big data science is 
vital to better understanding the inequalities present in both science and 
society. Progress in the field of microbiome visualizations means greater 
transparency in how the data is used. Small inclusions to the big data 
visualizations (such as explicitly stressing experimental and analytic 
limitations up front) enhance clarity and are vital to the improvement of 
the field. Larger efforts to optimize and standardize the processes and 
protocol of visualizing big data requires the combined effort of scientists 
in all fields, from social scientists to medical scientists.	  
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