
	

Intersect, Vol 8, No 3 (2015)

Where Computer Science and Education Intersect:
An Interview with Mehran Sahami, Ph.D.

Joyce B. Kang
Stanford University

Mehran Sahami is a professor and the
Associate Chair for Education in the
Computer Science department at
Stanford University. He is also the
Robert and Ruth Halperin University
Fellow in Undergraduate Education.
Professor Sahami completed his BS
and PhD degrees in Computer Science
at Stanford before working as a Senior
Engineering Manager at Epiphany and
a full-time Senior Research Scientist at
Google. He taught as a lecturer at
Stanford from 2001 to 2006, and
joined the CS faculty in 2007. His

research interests include computer science education, artificial
intelligence, and web search. In this interview, Professor Sahami discusses
computer science education, his personal experiences teaching computer
science, and the growing role that computer science plays in our society.

JK: How did you first become interested in computer science?

MS: I first got interested in programming in the fifth grade, actually. My
elementary school got these little PET computers that each had 4K of
memory, and a group of us were taught some basic programming. I got
really interested in it, but there just weren’t a lot of outlets to do it. Finally,
in junior high, we got a personal computer at home, an old Apple IIe, and
so I taught myself some more programming on that. It was kind of fun—
making games, things like that—and so, I knew I was really interested in
it, but I didn’t do anything sort of serious with it until I actually got to
Stanford. I took 106A [(Programming Methodology, Stanford’s
introductory computer science course)] when I got here and really loved it,
majored in computer science, and went on to graduate school. This was
really the place where the interest flowered into real computer science as
opposed to just tinkering.

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

2

JK: Before serving on the faculty here at Stanford, you worked as a Senior
Research Scientist at Google as well as a Senior Engineering Manager at
Epiphany, Inc. What is something that you learned from your experiences
in the industry that you would not have gained otherwise?

MS: There are certainly things that I gained there that I wouldn’t have
necessarily gotten in academia. Part of it was the exposure to scale of data
and machines, and problems that you have at a place like Google are just
different from those that you have here: you don’t get billions of web
queries at Stanford. I gained an appreciation for scale and the way you
could think about approaching problems when you had that much data or
that much computation available. But part of it was beyond just the scale
issue. It was an appreciation for what were the actual problems that were
being dealt with in industry. I think that academic preparation provided a
great foundation to then build on, but some of the problems that you see in
industry are different from the problems you see in a classroom setting.

JK: It seems that here at Stanford, there’s not really a shortage of students
who are interested in CS, but this is not the case across the rest of the
country. How do you think we can encourage more students to consider
CS, especially those traditionally underrepresented in the field?

MS: Right. Well, I think in general it is happening. Many other places are
also seeing increases in computer science enrollment. In general, it’s not
as much as Stanford—if you look at the national numbers, which are
actually tracked, they haven’t increased as much as Stanford—but there
are some places where there have been pretty dramatic increases as well. I
think one of the things is just the pipeline early on in terms of getting
students exposed to the notion of computing: what it is, computational
thinking, what computer science can even be about. When they get to
college, many students have had many years of math, many years of
science, many years of writing and reading. They’ve even potentially had
exposure to things like economics or statistics, depending on the school
they went to. Surprisingly, computer science is actually not that broadly
taught in high schools. Well-resourced high schools will have classes, but
that especially skews the pipeline toward high-income and well-resourced
places, and so that means many students who come from under-resourced
backgrounds haven’t necessarily gotten exposure. I think that’s the biggest
thing: having more exposure to computing—what’s possible to do with it,
the kinds of problems you can solve, the kind of impact you can have—
earlier on in the educational pipeline. Here, we do try to do some outreach
activities during the summer with high school students from
underrepresented backgrounds or from more challenged socioeconomic
backgrounds. We’ve done workshops in the past for teachers as well, so
we try to do what we can, but our main focus is on higher education.

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

3

JK: So going off of that idea, what would you say is the most pressing
problem in the current way we teach CS, whether at the collegiate level or
not, and how might we be able to fix this or overcome it?

MS: One of the problems that I think is a problem now but that wasn’t a
problem, say, seven years ago, is dealing with the scale. At a place like
Stanford, where you have a very large percentage of the entire student
population wanting to major in computer science and take computing
courses, the demand creates a lot of strain on resources—having enough
teaching assistants, having enough faculty, having enough opportunities
for students to get help—and so that can create some frustration in the
problem that students don’t feel like they are getting help. That can
potentially lead to unwanted activity, like someone trying to seek out
solutions from other sources that aren’t authorized. I think that’s one of
the things that makes dealing with the scale that tricky. I mean, it would be
great if CS 106A were a ten-person seminar and I could work personally
with every student, but if we did that, that would mean that seven hundred
students every quarter would not get access to that class, and so I think
that’s one of the tensions we need to deal with. Oftentimes, students will
request things like making the courses smaller, with the belief that if we
made the courses smaller, that student would be in that small course. The
reality is, well, we could make the courses smaller, but then there’s a good
likelihood that the student wouldn’t be in that course at all. The tradeoff is
that as a department we’ve made the decision to try as much as possible
not to cap our classes and allow for students to enroll who want to enroll,
but with that needs to come an understanding and responsibility with the
students that to have this kind of uncapped enrollment means that the
amount of attention we can give to each student individually gets harder
and harder as the size of the classes grow. And I think dealing with that
tradeoff appropriately is probably the biggest problem we’re facing now.

JK: That makes sense. Many argue that student desires to pursue
“practical” majors like CS dissuade them from considering life’s major
questions and pursuing a liberal arts education. How would you respond to
people with these views?

MS: I think the important thing is that there’s this false dichotomy
between doing computing and considering life’s big questions. I think it’s
entirely possible for someone to think of computing as a means to address
life’s big questions, and if you look at some of the things that are going on
in terms of, say, biotechnology research that is computing-intensive, that’s
a way of addressing a major human health problem through computation.
And so, I think part of it is actually this stereotype casting where there’s
this the belief that, “Oh, someone’s going to major in computer science
just because they want to go do startups or they want to make apps or

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

4

whatever, and they just want to make a lot of money.” For some fraction
of students that’s probably true (that’s where the stereotype probably
comes from), but that really does a disservice to all the other students who
are getting into computing because they want to have a big impact on big
problems in the world, and they just get painted with the same brush—that
they don’t care about big problems. So, I think we need to work to try to
dispel that myth because there are a large number of students who go into
computing precisely because they see it as a powerful means of attacking
life’s big problems.

JK: What is one thing you wish all of your students would leave your class
having gained, if they could only take one thing away from it?

MS: I think just an appreciation for problem solving. And I think that’s
one thing that sometimes gets overshadowed in the introductory classes
because they’re about programming. Students sort of feel like it’s about
the subtleties of the syntax of the language and figuring out how a loop
really works and what happens when you use this particular operator in
this particular situation, and sure, we need to explain all that stuff so
students can write programs, but the point of writing programs is to solve
problems. There’s a particular way of thinking with respect to having
clarity of thought to solve problems with a computer program because you
have to be super precise when you specify that solution to a computer.
And I think it’s that same notion of being precise and clear in one’s
thinking with the goal of solving a problem in mind, and computing and
programming are just a substrate for doing that, but that’s really the
underlying theme that I hope students get out of the class.

JK: Many students here see and know you as a fantastic teacher, but what
is something that you’ve learned from your students?

MS: There are a lot of things that I’ve learned from my students over the
years. One of them is just about the craft of teaching—the different ways
students learn, the different kinds of scaffolding that you can provide to
aid their learning process, the diversity of backgrounds that they come
from—and that can mean all kinds of things in terms of what sort of
teaching methods resonate best with them, where they actually are in their
learning process, how confident they feel about what they’re learning and
about being in an environment at Stanford. In that respect, there’s a lot
I’ve learned from my students about how to do a better job, because that’s
the main reason why many of us are here: because we really care about
teaching. We also care about research, but we’re very invested in the
teaching enterprise. Part of that is paying real attention to whom you’re
teaching and how they’re learning. There’s a broad spectrum of things—
there are students who have shown me about new problems that they were
solving, and new approaches that they were taking that have been

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

5

interesting, there have been students who have shown me about new
technical solutions to problems, and things like that that I hadn’t seen
before—and I always appreciate that too. At the end of the day, all those
things are great, but the thing I value most is that interaction with students
that helps me become a better teacher so that I can try to help more
students in the future.

JK: What would you say is your philosophy on teaching, and how has it
developed through all of your teaching experiences?

MS: Part of it is trying to teach in a way that really resonates with students
and that they retain the material and feel confident and empowered by
what they’re learning. I don’t view teaching as, “There’s a set of material
that needs to be talked about in class, and if I say the words of that
material in class, somehow, magically, students will retain it, and they’ll
perfectly master it.” Some students will, and that’s great, but part of the
teaching process is being aware of the way information is being
transmitted and how that information is actually being assimilated and
retained. For example, I like to use analogies a lot when I teach. Part of the
reason for that is that it allows students to take some new knowledge that
they’re supposed to be learning, and be able to fit that into knowledge they
already have, so they can understand what the parallels are, and they get a
more concrete example for how things work. And so the hope is, through
those kinds of examples, they’ll retain and better understand the material.
But it’s an ongoing process: by no means have I stopped learning about
teaching. There are always new things to learn, and I appreciate being able
to work with great colleagues who also deeply care about teaching. We are
constantly sharing ideas about things that we’re doing or adopting each
other’s practices, and so being in this kind of environment is just
wonderful for that kind of thing.

JK: You played a key role in revising Stanford’s undergraduate computer
science major. What did you feel was lacking in the old curriculum, and
how do the revised major requirements reflect this?

MS: I think the old curriculum was a good curriculum; the main thing it
was lacking was flexibility. All students went through the same set of
requirements, and there were a few options at the end—like two or three
classes that you could sort of make different choices for as electives—but
to first order most students were taking the same fifteen classes. In the
meantime, in the last twenty or thirty years, there’s been a tremendous
growth in computing, where there are a lot of sub-areas now, a lot to learn
in each specialization, and we wanted to provide the opportunity for each
student to be able to go deep into the area of computer science that they
were most interested in, and to be able to do that at the undergraduate
level. Therefore, the curriculum revision’s main goal was to provide that

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

6

flexibility by narrowing down into the core of a few classes—the stuff that
was required for all CS majors—and then providing lots of track options
for students to really go deep in the area they were most interested in. And
so it has this sort of dual effect. One effect is that students can now learn a
lot about the area they really care about so that they can become experts in
that area without having to go to graduate school, and at the same time, it
allows students who are CS majors to spend their time really focused on
the part of CS they really like the most. That’s kind of a win-win all
around: they’re getting really good at the thing they really like, and so
we’re pretty happy with how things turned out.

JK: In addition to computer science education, your other research
interests span machine learning and information retrieval. Could you
speak for a little bit on these interests and any others you may have?

MS: Sure. Some of them come from my original research work in
graduate school, where my focus was in machine learning. Then, when I
went out into industry, it was looking at applications of machine learning
and data analytics in different contexts, and part of that even early on was
related to text analysis. And then going to Google, it was pretty clearly
about information retrieval and search and a lot of the issues that come up
there, especially doing it on the scale of the Web and with a lot of the
weirdness that happens on the Web. That was sort of the natural
progression of research from what I was doing in graduate school, but I
was always interested in teaching. In graduate school, I had the
opportunity to teach some classes, and as an undergrad, I was a section
leader, and even when I went into industry, I was still part-time teaching
classes here as a lecturer. When the opportunity came up to come back
here full time, that was the chance to make teaching and education my
primary focus. There is still some of the research related to machine
learning that goes on, but that’s mostly research in support of education,
so now it’s applying machine learning methods or developing new
methods to analyze educational data. So the two work together pretty well.

JK: That’s really cool! Could you tell me more about a specific project
with that idea of tying machine learning to education that has worked?

MS: Sure. So there are a few different ones. One main one is actually a
project that is led by Chris Piech, who’s a graduate student that I work
with. He’s done a lot of different work with many different facets, but one
example would involve having traces of people solving programming
problems. Based on analyzing those traces by doing some clustering, by
doing some path analysis, can you do things like be able to understand
where students are having difficulty, understand different kinds of
modalities to solve a problem, and be able to potentially generate hints
automatically (as one way to approach scaling learning)? And so Chris has

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

7

actually done that at scale. There’s an organization called Code.org that
has their “Hour of Code,” where they have a bunch of online problems
that students can solve. Chris got data on over a million students and their
paths in terms of solving problems, and sort of based on that, he created a
system that could actually give students hints on how to improve their
program as they were programming, and that’s all generated from just data
and machine learning techniques.

JK: That’s really neat! So, to switch gears, how do you see the role of
computer science in our society today, and how do you see it evolving into
the future?

MS: Well, I think CS has already permeated many aspects of life and will
continue to grow in terms of its influence and the number of things that
rely on computing to work. I mean, fifty years ago, you bought a car, and
it was mostly mechanics. Now, you buy a car, and it has somewhere
between twelve and fifteen computers in it, doing all kinds of things in the
system. Part of that is, to many of us…just transparent—your car just
works, or some other gadget just works. But, the way we think of
computing as a substrate for information flow is pretty huge, and as
humans are social beings, I think computing is going to continue to play a
really big role in creating mechanisms that allow us to exchange
information more fluidly. But, it’s also going to help solve bigger
problems. We talked a little bit before about computing in biology, but
you could also imagine things like transportation. Can we use computing
to get more efficient transportation? People have talked about self-driving
cars for about ten years, and in our lifetime it will likely happen. When
exactly is unclear (that’s kind of debated), but I think it’ll happen. If you
can do that, you can also think about ways that you can make much more
efficient systems. You’ll probably need fewer cars if people are sharing
them, because most people’s cars are doing nothing most of the time—just
sitting there parked somewhere. So, if we were to not have to build that
many cars, it would be a huge amount of resource savings. If you can also
do things like have the cars drive in formation and draft and drive at
optimal speeds, there are potentially a lot of energy savings there as well.
There are these problems that are weird to think about as computational
problems, which are things like improving transportation and getting
better energy efficiency, but ultimately, computing is the substrate that
helps some of those things happen. And so I think we’re going to see more
of that as time goes on.

JK: Since computer science has come to impact so many areas of our daily
lives, do you foresee any potential challenges or dangers associated with
its growth?

Kang, Interview with Mehran Sahami

	

Intersect Vol 8, No 2 (2015)
	

8

MS: I think part of it, just like with anything else, is overreliance. To what
extent do people understand how the technology is working and are able to
compensate and adapt when something doesn’t work right? That’s one of
the issues that people have—they worry about autonomous cars, for
example, because what if they get into accidents? Well, the truth is that
autonomous cars don’t have to be flawless, they just have to be better than
people, and it turns out people actually have a lot of problems with
driving, but those are the kinds of tradeoffs we need to look at. When we
see a particular technology that has potential upsides and downsides,
what’s the right way to find the balance for it? It’s easy to have gut
reactions about things without really thinking about, “Well, what are the
implications, what does that really mean?” It’s not like we would get zero
people dying in car accidents, but if we got one hundred thousand less
people killed in car accidents, I think that would be a pretty significant
improvement in the situation. Part of that is just understanding how we
make those tradeoffs, what kinds of policies we make around these sort of
new technologies to try to keep them as safe as possible, but also having
an understanding of the limits of what the technology can do.

JK: What possible future applications of computer science are most
exciting to you right now?

MS: Probably computational biology, right now. That’s because I think
about the potential for improving human health on a pretty massive scale
in a lot of different ways. And, to the extent that we can do that, I think
there are then a lot of other issues we then need to work through—societal
implications and resource implications and all that—but I think that it
would be a pretty tremendous step forward if we can understand things
like diseases and pathologies better, if we can come up with better
treatment, and if we can help increase the quality of life people have and
the amount of time they have. That’s pretty huge.

