
Intersect, Vol 6, No 2 (2013)

“Computer Science and X”:
An Interview with Steve Cooper

Andréa Slobodien
Stanford University

Steve Cooper is an Associate Professor (Teaching) in the Computer
Science Department at Stanford University. He earned his PhD and MS in
Computer Science from Syracuse University and his BA in Mathematics
and Chemistry from Cornell University. His research areas lie in program
visualization and semantics. Together with Randy Pausch and Wanda
Dann, he developed Alice, a freeware object-oriented educational
programming language aimed at appealing to populations not normally
exposed to computer programming. From 2007-2009, Dr. Cooper worked
in the National Science Foundation’s Division of Undergraduate
Education, within its Education and Human Resources Directorate. There,
he worked as a program manager, and worked on the CCLI, ATE, NSDL,
and S-STEM programs. He also serves as Chairman of the Board of
Directors for the Computer Science Teachers Association.

Slobodien, Interview with Steve Cooper

2 Intersect, Vol 6, No 2 (2013)

Computer Science and Public Policy

ADS: What brought you to Stanford University?

SC: I came to Stanford in Fall of 2010. When they made me an offer I was
really excited. I had never been on the West Coast before; I had never
taught at a very elite school before; I had never been at a school where
there is such a devotion and dedication to teaching undergraduate
computer science, which is really the thing that I found most exciting. It
was a really exciting opportunity to get to work with faculty like Mehran
Sahami, Eric Roberts, Julie Zelenski, and Nick Parlante who I had known
from their reputations as leaders in the CS education community.

ADS: You teach a course on computers, ethics, and public policy (CS
181), and you also feature some interesting STS conversations at the end
of your introductory computing course (CS 105). What do you see as your
role in the intersection of computer science and areas like policy,
education, and ethics?

SC: The funny part is that when I came to Stanford, I had never taught an
ethics course before, and when the department asked me if I’d be
interested in doing it, I spent an inordinate amount of time preparing. I
think that first year I must have read four books a week just to try to get
myself up to speed. When I was at the National Science Foundation
(NSF), I had been aware that there was a huge disconnect between the
technical side of the field and the policy side. I remember one Christmas
when everyone from NSF was gone and I was asked to draft the NSF
policy piece for a response to some possible legislation in Congress
regarding cybersecurity education. I remember thinking, Really? Don’t
you have anybody better to do this? I was told, "Even during the year we
wouldn’t have had anyone better to do it. Someone would just have to do
it." And it got me thinking: Public policy is so important in terms of
dictating the directions of what we can and can’t do and where our field is
going to go, and NSF is such a central place for science, yet there aren’t
people who are really experienced in the technical and policy side. That’s
a problem. When I came here, I was very excited to get a chance to teach
that class and to make it so that more people would be able to recognize
the importance of connecting technology to policy. There are very few
schools in the country that even offer an STS-like major. Here, the
challenge, of course, is that the Silicon Valley has far more jobs for
someone who’s an STS major, so we can’t even send STS majors to
Washington, because there are no extra students. It became a chance for
me to get CS, STS, Symbolic Systems (SymSys), Math and
Computational Science (MCS), and engineering majors thinking critically
about what’s going on when you mix technology with policy. Certainly, a
couple of years ago when the Stop Online Piracy Act (SOPA) and

Slobodien, Interview with Steve Cooper

3 Intersect, Vol 6, No 2 (2013)

PROTECT IP Act (PIPA) almost passed, Silicon Valley didn’t respond in
a timely manner. There’s something really wrong when we are driven by
legislation by people who really don’t understand the pressing issues that
we need to address.

ADS: How do you feel about the response to SOPA and PIPA, with major
websites threatening to shut down?

SC: So that was kind of late. Silicon Valley companies could have been
more clever about this and they could have launched public action
campaigns, like Mark Zuckerberg is doing vis-à-vis immigration
legislation. If you look at the reaction to the Cyber Intelligence Sharing
and Protection Act (CISPA), which happened a couple years later, we see
that the Silicon Valley hasn’t learned. They didn’t get involved in public
policy, so we got CISPA back again, which is fine for some companies but
not for most.

ADS: Just as there are programmers in the Silicon Valley who don’t
understand policy, do you think that there is also a lack of engineering
knowledge in DC? For example, do you think there are young policy
interns who don’t know enough about programming but who are bound to
become our next leaders?

SC: Without a doubt that’s the case. When I was teaching on the East
Coast, I remember going to visit my senators from the state of
Pennsylvania. I remember meeting Senator Rick Santorum’s aide in
response to higher education and technology, and she was a lovely English
major fresh out of whatever Ivy League program she had come from, but
she didn’t understand computer science. Even when I met Senator Arlen
Specter’s aide, she was not technologically savvy. The awareness is not
there. When you look at Capitol Hill, it tends to be mostly humanities
majors who get thrust into tech because they’re the most junior person on
the team—not because they really have a computer science background.
I’m not sure why that is. Perhaps it doesn’t pay well; perhaps it’s not
glamorous. Certainly, if you look at the members of Congress, there are no
computer scientists. I don’t even think there are any engineers. Out of 435
members, there’s not going to be a tech presence at all.

ADS: In CS 105, which is an introductory programming course, you
feature a lecture at the end of the quarter about current issues in computer
science. What is your goal when you are doing that?

SC: CS 105 is largely comprised of students who take it as an exploring
step, but many are trying to finish their engineering requirement. When I
do that lecture at the end, I try and open a sense of awareness. For most
people, it is the only computer science class they’re going to take. These

Slobodien, Interview with Steve Cooper

4 Intersect, Vol 6, No 2 (2013)

issues are there, and they’re going to be more important in their lives than
ever. Who knows what one lecture can do, but maybe one lecture can
convince a student to go on and take a couple more computer science
classes—not necessarily to be a computer science major, but to have
enough programming skills to be a technology policy advocate and to
have a comfort with technology. Certainly, in Silicon Valley, many
humanities majors have a comfort with technology, so maybe I can help to
develop a much better person to have in Washington than many of the
folks who are already there.

Computer Science and Ethics

ADS: What do you see as the responsibilities of programmers? To hack
away and create beautiful, elegant code? Is there a greater responsibility?

SC: Definitely the latter. What I try to do in the CS 181 course is show
that technology isn’t value-neutral. As a result of what you build, you’re
pushing a particular set of values. There are a couple of recent articles that
talked about how the Silicon Valley is determining privacy policy for the
nation. In building the technology to do or not do certain things, we are de
facto making the case for and against personal privacy. Computer
scientists can’t say, I was just working there, I was just making a program,
it’s not my fault. It is your fault if you build something that’s
inappropriate, and you have to be aware, and you have to spend time
thinking about the issues involved in what is being built. It’s something
that software engineers aren’t preparing themselves to think about, but
they must think about it. We are fortunate that so many students take at
least one computing, ethics, and public policy course so they have a
chance to see this. It’s not just about the chance to make money by
building code. What you’re choosing to do really matters.

ADS: What literature and film do you consider mandatory for every
programmer?

SC: Good question. I’m going to be somewhat biased because I’m a
product of a liberal arts education, and I think that is important. I’m in a
computer science department that is housed in an engineering school that
typically doesn’t assign the sheer volume of reading and literature
everyone should know. I’m clearly biased in favor of being extraordinarily
well-read in English, Anthropology, History, Sociology, etc. One of my
favorite Turing Award winners is Alan Kay, and he has published his
reading list. His reading list doesn’t have a whole bunch of computer
science books. It has a whole bunch of books in the social sciences and
humanities. I recognize that because we are in an engineering school, I
probably can’t get every computer science major to read my list of the top
100 books, but it doesn’t mean I wouldn’t like that as a background. It

Slobodien, Interview with Steve Cooper

5 Intersect, Vol 6, No 2 (2013)

certainly is my own influence, coming from an undergraduate program as
a science major in a school of arts and sciences. I did a year of Economics,
Philosophy, two years of English, and a year of American Government, so
that background was very helpful in terms of making me who I am. I think
that is important for students, though it’s harder in a school of engineering
where students simply don’t take that volume of classes.

Computer Science and Education

ADS: Do you think that it’s better to develop computer scientists into
better writers and communicators, or is it better to convert non-technical
majors into people who understand code?

SC: I’d answer both. When you sit in a classroom of 170 students, it’s
very hard to know which are the students who are going to get the
opportunities to be called to effect policy. Which are the students who are
going to be the ones before congressional subcommittees? I don’t know
that. I don’t know who’s going to be ready, but I’m certain that in that
classroom we are going to have a bunch of those people influencing public
policy sometime in the not-too-distant future. I kind of duck your question
by saying both because I think both are needed and I don’t know which is
the best.

ADS: Stanford tries to make us take introductory humanities courses, and
I still remember reading The Republic. Plato’s Form theory is how I came
to understand object-oriented programming and instance variables. Do you
think that those kinds of connections are really important for
programmers?

SC: I do. I think a Platonic view of an object versus, for example, an
Aristotelian view of an object, actually helps give you a perspective on
object-oriented programming: does the mountain have beauty because it’s
there or is it from your interactions with it that the mountain is beautiful?
We can consider the concept of the meaning of an object in object-
oriented programming in much the same way. I think those things are very
helpful for students, and I think that’s part of the well-roundedness of an
education. I would like to see students having a strong humanities
background because I agree with you. I think you can get a great deal out
of reading ancient philosophy. I think that’s an incredibly valuable thing to
do, and it gives you a very different perspective on your own science.

ADS: Computer science has this rare quality of being elite and accessible
at the same time. On the one hand, if you grow up with a computer, no
matter how good that computer is, you can teach yourself how to program.
On the other hand, programming is so complex that if you’re not a genius,
you need to go to a university to learn these skills. Do you think that

Slobodien, Interview with Steve Cooper

6 Intersect, Vol 6, No 2 (2013)

there’s something that could be happening in education that would help us
create more programmers?

SC: This is a real challenge. When you look at the formal K-12 school
system in the US, computer science doesn’t play a huge part. On one hand,
that’s very sad, because many kids don’t get exposed to computing. On the
other hand, maybe that’s not such a bad thing because there simply aren’t
enough super K-12 teachers yet and we have to figure out how to address
that. Maybe it’s a chicken and egg problem and maybe the schools of
education have to produce more. There are teachers in K-12 who are
wonderful computing teachers, but there are nowhere near enough of
them, and to produce enough would be an enormous national undertaking.
Having kids get a positive exposure to computing is important, and we’re
exploring how to do it. We are exploring through informal means: I’m
running a summer camp for kids who have no previous computing
experience. It’s only going to impact a small number of kids, but it’s going
to be a number of kids nonetheless. I run a workshop for teachers to try
and develop that expertise, because it’s hard to lobby for more exposure in
K-12 if we are not going to be able to get teachers. If you look at the
average starting salary of teachers and the average starting salary of a
Google software engineer, the difference is massive. How are we going to
get some of the best people in computer science to become high school
teachers or middle school teachers if the pay is one-third or one-fourth the
rate and the benefits are worse? Of course, I do advocate very strongly for
exposure in K-12, but I worry about the capacity to do that. Where are we
going to get the teachers and how are we going to produce the teachers?
Lots of people are trying online approaches. There are a bunch of
programs to learn computer science on your, but I think the jury is still out
on the success of being able to teach yourself computer science. I think it’s
hard to do and it’s very hard when you get stuck, because it’s a meta-level.
It’s not using an algorithm, it’s writing the algorithm. It’s hard to get the
right kind of help that you need, so I worry about whether these pure
online solutions are going to help enough kids. Kids come to Stanford, and
many become CS majors who have never had a CS background before
college, and I think that’s a good thing. I think colleges having these
absolutely superb CS1 classes is an absolutely essential thing. Many kids
come to Stanford and say, I didn’t realize I was good at that, and I had
such a good experience in CS 106A. Wow I’m going to become an STS,
SymSys, CS, MCS, etc., major, because I’m actually good at this type of
problem-solving. I’d love to do it in high school, but I’d also like to push
the colleges toward trying to create outstanding CS1 classes, and too few
of us are doing so.

Computer Science and the Silicon Valley

Slobodien, Interview with Steve Cooper

7 Intersect, Vol 6, No 2 (2013)

ADS: Who do you think are the most influential people in computer
science today? Are they all programmers?

SC: If you look at the most influential people, you look at people like Don
Knuth, who is a retired computer science professor here. When you look at
the influence he’s had on our discipline, it’s absolutely stunning.
Computer science doesn’t have a Nobel Prize because we weren’t around
at the time of Nobel. We have the Turing Award. If you look at the Turing
Award winners, those are the giants of our field, because those are the
ones who are influencing the direction of studies 10, 15, and 30 years from
now. They’re not the ones who are in the news. They’re not the Bill Gates,
Mark Zuckerbergs, or Sergey Brins of the world, because the people I’m
telling you about aren’t going to be the richest. When you look at the ones
who influence the discipline, it’s likely going to be the ones who are
researchers and academics—not the ones who become billionaires with a
company. Sure, one can argue that Microsoft could have a great deal of
influence over anything they want because of sheer volume, the number of
people they hire, and the money that they have. Perhaps they can and do
have influence.

ADS: It seems like these Mark Zuckerberg types are entrepreneurs who
knew how to code, but they blurred the line between entrepreneurship and
engineering. What do you think about the divide between computer
scientists who do research in the Gates Computer Science building all day
and the ones who hack something together and focus all their time on
selling it and making profits?

SC: You need both of them. You need the people pushing the field further,
and you also need the people producing the products. Stanford tends to
represent both quite nicely. Clearly, being in the Silicon Valley with the
entrepreneurship culture and all the venture capital funds available, it’s a
really exciting place to be, and you can do both. The funny part is that you
don’t even have to do both individually. You have PhD students who go
off to found companies. One of the co-founders of VMware just came
back to finish his PhD 18 years later. You can have your cake and eat it
too. You can move back between one and the other very smoothly if you
wish to, and that’s a nice thing, and both are needed from a practical
perspective, because you certainly don’t want the field to stagnate. But
you also need people to produce products because we are living in the
information revolution. We are the best ones at handling information and
trying to make sense of it.

ADS: The number of CS and STS majors at Stanford is booming, and CS
is now the largest major. Why do you think that technical majors have
become so popular? Is it because we are in the Silicon Valley, or is it a
response to something greater?

Slobodien, Interview with Steve Cooper

8 Intersect, Vol 6, No 2 (2013)

SC: On one hand, CS is practically the only field that wasn’t hit by the
recession. Parents have been pushing their kids toward something that is
career-oriented, and computer science has been fairly immune from the
economic downturn. I’ve seen times where people have gravitated to CS
for purely economic reasons, but this isn’t necessarily one of those times.
There’s a certain sense that the need for CS in your field, whatever that
field may be, has grown and become more obvious. A lot more of the
students taking Programming Methodology (CS 106A, or CS1),
Programming Abstractions (CS 106B, or CS2), and Programming
Paradigms (CS 107) aren’t CS majors and have no desire to become CS
majors but end up needing it for their field. We have seen a huge growth
of CS majors, and I think the economy is part of it. I think the popularity
does tend to ebb and flow a fair bit. My guess is that interest will wane
some time in the future, but the need for computing isn’t going to go
away. Students who are studying Economics are going to need to be
taking CS classes whether or not they want to. Their discipline is going to
dictate it, and that’s a change that we will probably never undo. Man, it’s a
popular time to be CS in the Silicon Valley, that’s for sure!

ADS: Do you think that universities are graduating the amount of software
engineers needed, or is there a chance that this bubble will burst and there
will be less of a need for CS majors in the near future?

SC: My colleague, Eric Roberts, puts together job projections. We are
producing less than one-third of the number of projected job openings
according to the Bureau of Labor Statistics. The U.S. is producing just
under 40,000 CS graduates a year.1 This is a little under one-third of what
industry says they need. Part of the big push in immigration reform is
because industry says they need labor, and we aren’t producing anywhere
near the quantity of labor needed. While I expect certain industries to
bubble, I don’t expect the need for computer scientists to go away any
time in the near future because there’s such a disconnect between the
number of available computer scientists or CS-related majors and the
number of jobs. Companies have been trying to outsource for years and
years and we don’t know how to do that. We figured that we would go to
Eastern Europe or Southeast Asia, but we haven’t figured out how to
effectively outsource any but the most menial of jobs. Industry is, to a
certain extent, stuck. They’re fighting like mad to bring more workers here
because jobs simply aren’t getting filled. Just go to the CS department job
fair and look at the buzz inside that massive tent. They’re trying to hire 15
times the number of people who are in the tent. The disconnect between
labor and need for labor is real, and I don’t see that righting itself in the
near future.

1 Information from https://webcaspar.nsf.gov/

Slobodien, Interview with Steve Cooper

9 Intersect, Vol 6, No 2 (2013)

Computer Science and Gender

ADS: With the increase in CS majors at universities, what is happening
with the gender imbalance? Do you think our department is doing
innovative things in this regard?

Gender is a huge issue. It’s an issue with all under-represented groups, but
I’ll try and talk specifically about gender. The year before I got to
Stanford, three out of 69 graduating students were female. Now, about
one-fourth of our graduating CS majors are female. That’s not enough. It
should be 50%. We are getting there. I think Stanford has built up a core
group of very excited and energetic young women who are excited to lead
the charge, because it’s very hard for a bunch of male professors to lead
this. We can encourage, push, help, and work with the students to be able
to run wonderful programs. A few times a quarter, we host a Women in CS
dinner, and we’ve run out of big enough rooms in Gates to host all
attendees. It helps that it’s driven by the students, rather than from the top
down. And it helps that this group is encouraging the younger generation
of women to become the next leaders. It helps build leadership experience
and it’s a great way to help address this terrible imbalance. Nationwide,
it’s an embarrassment, and it’s still not where it needs to be at Stanford.
We are getting better, but we still need 50% of our majors being women,
not 25%. We need to look at what other schools are doing successfully.
We invite speakers in from other schools and ask what they’re doing that
works, and we steal their ideas. She++ recently put together a
documentary, and you hear speakers talking about the fact that this is a
national issue. In fact, much of the disconnect between available workers
and available jobs would be solved if the percentage of women became
equal to the percentage of men who are in CS. Some campaigns are
probably more successful than others, but we just have to keep trying until
we get there.

ADS: Why is a gender balance so important?

SC: As soon as you don’t have enough workers of any demographic
working in CS, you don’t have the maximum number of workers. It’s a
labor issue. It also becomes an issue because the more eyes you have
looking at a piece of code and the more hands you have producing a piece
of code, the better it’s going to be and the more varied perspectives you’ll
have. You’re going to get better quality code. Do women program
differently than men? Maybe they do, maybe they don’t. But it’s a work
force issue. By simply telling women, no you are not going to be
computer scientists, we are not meeting the labor need. Computer science
jobs also tend to be very high-paying jobs. They are jobs that have aspects
that tend to be amenable to telecommuting and building families. When
you look at some of the companies in the Silicon Valley, there’s support of

Slobodien, Interview with Steve Cooper

10 Intersect, Vol 6, No 2 (2013)

daycare facilities for kids, and it’s really easy to be involved in a family.
So why do we want to be sending women away from these sorts of jobs
rather than sending them towards these jobs?

Computer Science and the Future

ADS: Object-oriented programming is a new concept compared to the
kinds of computer science that we were studying years ago. How do you
think the major has changed since first coming to Stanford, and what
changes might we expect to see in the future?

SC: One of the things we tend to forget is that our field is extraordinarily
young. The term “software engineering” only dates from 1968. So if you
were alive in 1967, people did build systems but software engineering
didn’t exist as a term. In trying to answer your question, there are a couple
of aspects. The technology is changing incredibly fast, so we have to make
sure that the students are able to change with the technology and the times.
It’s not a matter of learning some language or some technology, because I
can assure you that in 5 years, the popular language is going to be
different. I don’t know what it will be, maybe it will be Python, but it’s
going to be a language that wasn’t widely taught a few years ago. The
most popular language 5 years after that probably hasn’t been invented
yet. We have to get students ready for the technology, and the basic
problems we have been facing as a discipline for the last 20-40 years
haven’t changed all that much. They keep getting rediscovered because
they’ve been hard problems, and I expect that to continue. Security is
going to be big, and parallel and concurrent programming is going to be
very big. With the breakdown of Moore’s law, the solution is to put more
CPUs on the chip, but you’re going to have to learn how to be able to
exploit that. Though we were struggling with concurrent and parallel
programming in 1970, we are still struggling with it. The next generation
is going to discover that it’s still hard to do. It’s still hard to build reliable
systems, and security still matters. Handling big data is going to be
another one, though we’ve been struggling with big data forever, the
difference being that now we’ve got better techniques to deal with it. I see
all of these fields as growing. I don’t know if they’re new problems, but
they’re new views of existing problems that we haven’t done a good job of
solving. One of the most important growing areas is the intersection of
computer science with x: whether it’s with finance, photography,
sociology, English, or literature, virtually every major is finding itself
needing to interact with computing, and I would expect to see the growth
of many of these new fields. This produces something new because
sociologists, for example, have been worried about certain questions for
centuries, and computer scientists didn’t even know these questions
existed, much less how to solve them through computing.

