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Abstract 
Around 60,000 individuals are diagnosed with Parkinson’s Disease (PD) in 
the United States each year. With the disease’s increasing prevalence, early 
severity diagnosis is critical for effective symptom management. The 
MDS-UPDRS is the current gold standard of PD severity diagnosis, which 
is highly comprehensive. Still, it lacks the utilization of complex data, and 
its potential subjectivity contributes to the accuracy of only 80.6% of 
clinical diagnoses of PD. This research project aims to incorporate 
kinematic data in the MDS-UPDRS by analyzing the impact of left and 
right foot velocities on the Postural Stability MDS-UPDRS score and, thus, 
PD severity. Three primary data analyses were conducted to investigate the 
relationships between (1) velocity and time (i.e., constructing velocity 
curves), (2) step length for control and PD patients, and (3) step length and 
MDS-UPDRS scores. Velocity and step length demonstrated a positive 
correlation; the trends among participant groups in velocity curves were 
similar to those of the step length boxplot analyses, as confirmed by 
confidence intervals and p-values. Additionally, a statistically significant 
(p=0.0237) inverse relationship between step length and MDS-UPDRS 
scores was observed, indicating that larger step lengths correlate with better 
postural stability. These results culminate in a negative correlation between 
foot velocity and MDS-UPDRS scores, and therefore, incorporating 
kinematic data into the MDS-UPDRS may reduce subjectivity and improve 
early diagnosis accuracy. By combining this modified rating scale with 
other diagnostic methods, researchers can develop a device that accurately 
diagnoses and treats Parkinson’s disease. 
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Introduction 
By 2030, the prevalence of Parkinson's Disease (PD) in the United States 
is expected to rise by 29% (Parkinson’s Foundation, 2019). First identified 
by James Parkinson in 1817, PD is a chronic neurological disorder that 
primarily affects individuals around 60 years of age. The National 
Institutes of Health reports that between 5% and 10% of people with PD 
experience symptoms before age 50. A hallmark feature of PD is postural 
instability, which results from degeneration of dopaminergic nerve cells in 
the substantia nigra (Latif et al., 2021). Levodopa, the first intervention 
method, was developed in 1961 to stimulate dopamine activity and has 
been shown to improve akinesia (Tambasco et al., 2018). Another 
intervention method developed approximately 26 years later is deep brain 
stimulation, which involves using implanted electrodes to generate 
electrical impulses that activate specific cells and chemicals in the brain. 
Deep brain stimulation is effective in treating some PD symptoms, 
including dyskinesia caused by long-term use of Levodopa (Shin et al., 
2020). However, neither treatment provides a complete cure for PD.  

Scientists continue to seek accurate early diagnosis of PD and more 
effective strategies to halt symptom progression. This paper focuses on the 
relationship between kinematic data, step length, and the MDS-UPDRS 
scores: three variables that may offer deeper insight into disease severity 
and management. 
 
Parkinson’s Symptoms and Postural Instability 
Parkinson's Disease (PD) is characterized by three primary motor 
symptoms: resting tremors, stiffness, and bradykinesia, which, along with 
loss of postural reflexes, are the cardinal signs of the disorder. The 
presence and severity of these symptoms enable clinicians to distinguish 
PD from other Parkinsonian syndromes (Williams & Litvan, 2013). 
Additional supportive diagnostic criteria include the observation of 
secondary motor symptoms, such as freezing of gait, dystonia, dysarthria, 
and sialorrhea, as well as non-motor symptoms, including sleep disorders 
and irregular or atypical cognitive and neurobehavioral functions 
(Jankovic, 2008). The absence of even a few of these symptoms suggests 
the presence of an alternative Parkinsonian disorder.   

Postural instability (PI) is another highly debilitating feature of 
Parkinson's Disease (Palakurthi & Burugupally, 2019). Clinicians assess 
PI using the pull test, which involves pulling back on the patient’s 
shoulders. At the same time, wearable sensors record various metrics such 
as time to regain balance, step length, number of steps taken, and 
velocities of different body parts (Chen et al., 2013). These measurements 
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not only provide insight into balance but also serve as kinematic indicators 
that could help quantify PD severity more precisely. 

 
Analyzing PI, Gait, and Severity of PD 
A patient's gait assessment is conducted using the gait test, a simple 
method for evaluating their normal walking ability. The patient is asked to 
walk along a hallway while wearable sensors gather data, as in the pull test 
(Pistacchi, 2017). Note that while similar, the gait and pull tests are 
distinct; the former tests walking, and the latter tests balance.  

Although such tests are available, there is currently no standard 
diagnostic method for Parkinson's Disease (PD), and the severity of the 
disorder and associated symptoms is challenging to measure objectively. 
Presently, the rating scales used to assess the severity of PD symptoms 
rely heavily on subjective observations rather than complex data or 
numerical measurements. The primary rating scale used in clinical practice 
is the Movement Disorder Society-Sponsored Revision of the Unified 
Parkinson's Disease Rating Scale (MDS-UPDRS), developed in the 1980s 
as an updated version of the original UPDRS and an alternative to the 
previously used Hoehn and Yahr Rating Scale from 1967 (Goetz et al., 
2004). The MDS-UPDRS evaluates 50 symptoms across four categories: 
non-motor experiences of daily living, motor experiences of daily living, 
motor examination, and motor complications (Goetz et al., 2008). 
Symptoms such as postural instability are rated on a scale from 0 to 4 
(Table 1). However, the reliance on subjective scoring has prompted a 
search for more objective, data-driven assessments. 

 

 
TABLE 1.  Section 3.12 Postural Stability from MDS-UPDRS. 
 
 

                              3                                    Intersect, Vol 18, No 3 (2025) 
 
 



Maddineedi, Parkinson’s Disease & Foot Sensors 

PI and Kinematic Data 
The MDS-UPDRS lacks precision in its examination of data, which may 
contribute to the clinical accuracy of PD, which is currently at only 80.6% 
(Rizzo et al., 2016). However, incorporating kinematic data may offer a 
solution to this issue. Kinematic data, including velocities, acceleration, 
the center of mass velocity, step length, and time, is collected during pull 
tests using 17 wearable sensors (Bologna et al., 2016). Currently, wearable 
sensors and kinematic data are utilized in two areas of Parkinson's 
research: long-term monitoring of motor symptoms (Borzì et al., 2019) 
and treatment of motor symptoms (Ileșan et al., 2022), mainly tremors. 
Kinematic data, particularly from foot sensors, are generally disregarded 
outside these two areas, with scientists attempting to establish correlations 
between PI and other PD factors (Błaszczyk et al., 2007) rather than with 
different forms of data.  

Thus, a central question emerges: What relevant questions about PD 
can kinematic data address, and how might it improve the accuracy of PD 
diagnosis? This experiment aimed to identify the effect of the velocities of 
the left and right feet on the Postural Stability MDS-UPDRS score and, 
thus, on the severity of PD. The hypothesis postulated that an increase in 
foot velocities would correspond to a decrease in the UPDRS score. As 
scientific literature suggests, foot velocity positively correlates with step 
length, and as a longer step length can improve stability while walking, 
ultimately leads to a decrease in the MDS-UPDRS postural stability score. 
 

 
Methods 
Datasets 
All datasets utilized in this study were sourced from the University of 
Minnesota. Kinematic data were collected during pull tests at the clinic, 
where patients wore 15 Inertial Measurement Units (IMUs) to record 
movement data through the Xsens program. Xsens utilizes this data to 
create a virtual representation of the body (Goulermas et al., 2008), and 
the IgorPro software was used to identify the onset of perturbation (Martin 
et al., 2006). The generated time-series kinematic data, such as the time 
until the balance was regained, velocities, accelerations, etc., were then 
extracted. 
 
Velocity Curves 
Generating velocity curves that depict the relationship between velocity 
and time is necessary to establish the correlation between velocity and step 
length. Comparisons between these velocity curves and the step length 
analyses of PD patients can establish the link between velocity and step 
length. 
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Data analysis was performed in R Studio using the tidyverse package 
suite, including dplyr, rmisc, and the ggplot2 library for data processing 
and visualization. After preparing the environment and preprocessing the 
data, the center of mass, left foot, and right foot velocity data frames were 
merged into one master set. To eliminate any unnecessary overlap between 
the two velocity curves, it was determined whether the left or right foot 
responded first to the perturbation. Upon filtering the master data set to 
contain only the first foot and center of mass velocities for control (n=54) 
and PD (n=61) patients, ggplot was used to create the curves. The same 
patients were tracked at baseline and at a twelve-month follow-up, 
provided they were unmedicated at both time points, yielding a sample 
size of 61. 

The velocity curves were deemed statistically significant if their 
confidence intervals did not overlap for 50 milliseconds or longer.  
 
Step Length for Control and Baseline + Twelve-Month Follow-Up PD 
Patients 
This analysis uses the same patients (and primarily the same libraries) as 
the previous data analysis, and as before, the PD patients were separated 
into two groups. Here, the relationship between step length and the control 
and PD patients at baseline and twelve months is analyzed. The ggplot2 
library, specifically the geom_boxplot function, was used to create the 
graph with a slight modification–the average step length is shown rather 
than the median. The statistical significance between the groups of 
patients was calculated using the compare means function with the 
Wilcoxon Signed-Rank Test.  

The data analyses thus far have helped conclude the relationship 
between velocity and step length.  

 
 

Results and Discussion 
Velocity Curves 
The velocity curves in Figure 1 depict the relationship between velocities 
and time and their respective confidence intervals. Notably, only the 
velocity of the first foot responding to the perturbation from the pull test is 
displayed. As the Figure 1 caption states, these curves are statistically 
significant as the confidence intervals do not overlap for at least 50 
milliseconds. It is worth noting that the velocity of the right foot for PD 
patients at baseline and 12 months later is nearly identical. At the same 
time, a significant difference is observed between control and PD patients 
in terms of left and right foot velocities. These observations, in 
conjunction with Figure 2, confirm the positive correlation between foot 
velocity and step length. 
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There is, however, a noticeable difference between the left and right 
foot velocity curves of PD patients. This is likely due to the size of the 
applicable patient population; the majority appeared to first use their right 
foot in response to the “pull,” indicating right-handedness among this 
participant population (Hebbal & Mysorekar, 2006). 

 

 
FIGURE 1. Center of mass (COMVel), left foot (LFVel), and right foot 
(RFVel) velocity curves for Control and PD patients, further grouped by 
visits. Follows first foot to move in response to perturbation from pull test. 
Not all 61 PD patients are on medication at both visits. All curves are statistically 
significant; the confidence intervals do not overlap for 50 ms or more 
considerable periods. 
 
 
Step Length for Control and Baseline + Twelve-Month Follow-Up PD 
Patients 
The boxplots in Figure 2 demonstrate the relationship between step length 
for control and PD patients, grouped by visits, and the mean step length is 
represented with a slight modification. Combined with the findings from 
Fig. 1, the correlation between velocity and step length becomes apparent. 
The p-values (p = 0.19) suggest that there is no significant difference 
between the average step lengths of PD patients at baseline and their 
twelve-month follow-up (similar to the lack of difference in the right foot 
velocities of PD patients in Fig. 1). However, there are significant 
differences between the baseline PD and control patients (p = 1.71e-82) and 
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the PD twelve-month follow-up and control patients (p = 1.16e-65), which 
is like the substantial difference in foot velocities between control and PD 
patients in Fig. 1. The graphs prove a positive correlation between velocity 
and step length. 
 

 
FIGURE 2. Total step length for Control and PD patients, grouped by visits. 
Note the lack of a statistically significant difference between the baseline and 
twelve-month follow-up PD patients (p-value = 0.19; greater than 0.05), but 
the presence of one between the PD baseline and Control patients (p-value = 
1.71e-82; less than 0.05) and one between the PD twelve-month visit and 
Control patients (p-value = 1.16e-65; less than 0.05). 
 
 
Step Length and MDS-UPDRS Postural Stability Score 
The error bar line graphs of Figure 3 depict the relationship between step 
length and the MDS-UPDRS postural stability score, using functions such 
as ggplot, geom_errorbar, and geom_line. Additionally, the summary_SE 
function analyzed the various MDS-UPDRS scores before graphing. All 
the control patients had MDS-UPDRS postural stability scores of 0 and 
were thus not separated from the PD patients on the x-axis. 

All relationships depicted, except for the one between 
MDS-UPDRS scores 2 and 3, were statistically significant with an average 
p-value of 0.02368. Although the relationship between scores 2 and 3 is 
statistically significant (p=1.75e-1), the result may be unreliable due to the 
small sample size (n=5), compared to the 56 PD patients who scored 1 and 
2 and the 54 control patients with a score of 0. 
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The data analysis strongly suggests a clear inverse relationship: 
lower step lengths are associated with higher (worse) scores. This 
reinforces the chain linking foot velocity → step length → postural 
stability.  

 

 
FIGURE 3. MDS-UPDRS Postural Stability scores as related to the pull test 
step length. Note how all the relationships (technically except between 2 and 
3) are statistically significant. Between 0 and 1, p = 7.94e-17; between 0 and 2, 
p = 4.26e-45; between 0 and 3, p = 1.04e-18; between 1 and 2, p = 2.94e-23; 
between 1 and 3, p = 1.05e- 2; all are less than 0.05. While the relation 
between 2 and 3 is significant by definition (p = 1.75e-13), it is an “outlier” 
because only five patients were recorded for scores of 3 vs. 26 for scores of 1 
and 2 and 54 for scores of 0. 
 
 
Conclusion 
Before validating or refuting the hypothesis, two concepts need to be 
examined. The first is the relationship between velocity and step length, 
supported by scientific literature (Alvarez et al., 2006; Hubert et al., 2015), 
and logical reasoning. Velocity represents the distance traveled over time, 
and greater velocities indicate that a greater distance was covered in less 
time, requiring longer steps. Although one might assume that this 
relationship is more closely related to mass, the fact that most patients had 
a similar center of mass velocity supports the original idea. Connecting 
this concept with the established inverse correlation between step length 
and MDS-UPDRS Postural Stability scores confirms the hypothesis. 
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However, this conclusion applies primarily to right foot velocity, as 
the dataset lacked sufficient left foot response data. This limitation should 
be addressed in future studies. 

Although previous studies have indicated a positive correlation 
between step length and the MDS-UPDRS Postural Stability scores, this 
relationship has yet to be explicitly described in the literature (Lai et al., 
2022; Virmani et al., 2022). However, many studies have examined the 
relationship between step length and gait, particularly regarding the 
patient's walking ability (Revuelta et al., 2022). These studies have 
consistently demonstrated that greater step length is associated with a 
lower likelihood of freezing of gait, which suggests better walking ability 
(Quek et al., 2022). Accordingly, individuals with better walking ability 
would be expected to have good balance and high postural stability, as 
reflected in a lower MDS-UPDRS Postural Stability score. 

Recent research utilizing wearable sensors has indicated the potential 
implications of kinematic data in accurately diagnosing the severity of 
Parkinson's disease (PD) (Balakrishnan et al., 2022; Rovini et al., 2017). 
This study contributes to that ongoing research, providing evidence that 
foot velocity—especially in the right foot—may serve as a useful, 
objective indicator of disease severity, as researchers aim to create 
unobtrusive devices using machine learning to diagnose, monitor, and treat 
PD symptoms (Mughal et al., 2022; Mei et al., 2021; Makarious et al., 
2022).  

Future avenues of research should explore whether integrating 
kinematic measurements with machine learning models or accelerometer 
data can further enhance clinical utility. Sample size expansion, especially 
for higher MDS-UPDRS scores and left foot analysis, will be critical to 
validating these early findings.  

It is concluded that by integrating a kinematic data-enhanced rating 
scale with other clinical diagnosis techniques (e.g., accelerometers, 
force-sensitive resistors, gyroscopes, wearable sensors, etc.), practitioners 
can develop a comprehensive approach to diagnosing, evaluating the 
severity of, and effectively managing Parkinson's Disease. 
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