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Abstract

Pancreatic cancer is one of the deadliest malignancies due to its late-stage
diagnosis and lack of effective early detection tools. Existing detection and
screening methods currently fail to identify the tumor at its early, more
treatable stages, contributing to persistently low survival rates and
necessitating alternative approaches. However, in recent times, machine
learning (ML), which is a branch of artificial intelligence (Al), has shown
immense promise in the field, potentially enhancing early cancer detection
by identifying minute and subtle patterns in clinical data. This study
explores the application of machine learning and deep learning in the
prediction of pancreatic cancer, using notably as input a set of patient
urinary and blood biomarkers identified in previous studies as potentially
promising for early detection of pancreatic cancer. The goal, after all, of
this study is to predict the presence of the disease before it is diagnosed.
Four classification models (Neural Network, Decision Tree, Random
Forest, and K-Nearest Neighbors) were implemented to analyze the data
features, classifying individuals as healthy, having benign hepatobiliary
disease, or having pancreatic cancer. To further improve prediction
reliability, a Multiplicative Weight Update (MWU) method was applied to
dynamically adjust the influence of each model based on their testing
performance, finally forming an overall more robust and accurate
program. The integration of four distinct classification models, in tandem
with the MWU method, distinguishes this research from previous studies
and enhances its predictive performance. Given the varying concentrations
of biomarkers associated with different pancreatic conditions, the use of
multiple diverse models to capture both linear and complex non-linear
patterns in the biomarker data was particularly important, something prior
studies relying on individual models rarely achieved. As a result, the final
prediction accuracy was significantly improved. The results demonstrate
high accuracies for most models, with the Decision Tree achieving the
highest predictive accuracy of 98.7%. These results highlight the potential
of Al-driven diagnostic tools in improving early pancreatic cancer
detection.
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Introduction

Pancreatic cancer is one of the most lethal tumors, partially due to its
difficulty of early detection and the absence of existing detection tools in
the industry. By the time symptoms of this malignant cancer appear, the
disease is far too advanced, drastically reducing therapeutic options and
resulting in dismal survival rates. Historical data shows that the 10-year
survival rate for pancreatic cancer has remained at a meager 1% both in
1971 and 2011, showing no improvement despite advancements in cancer
research and treatment methods. On the other hand, other cancers such as
testicular, skin, breast, and prostate, have seen dramatic increases in their
long-term survival rates over the same period (Ali, 2016). Such static
survival outcomes urgently call for an innovative solution, and with the
constant advancements of Al-driven methodologies, machine learning can
most certainly be effectively leveraged to help advance this cause, and
detect malignancy at more treatable stages, hence potentially altering and
improving its historically grim prognosis and survival rates.

10 year survival rates (%) by tumour type 1971 vs 2011
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FIGURE 1: 10-year survival rates of different cancers in 1971 vs 2011 (Ali,
20106).

Al in healthcare

Artificial intelligence and machine learning, a branch of artificial
intelligence, have already and are yet to further revolutionize the medical
and pharmaceutical sectors, offering faster, more efficient, and more
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accurate diagnosis and treatment for potentially life-threatening diseases.
By employing a variety of statistical, probabilistic and optimization
techniques, Al technologies offer the possibility to analyze and process
vast amounts of clinical data, from medical records to medical imaging, as
well as identify patterns that would not be easily identifiable by humans.
In this way, they enable early and precise disease diagnosis through
analysis of subtle changes in patients’ vital signs, medical imaging,
histopathology slides or biometrics, and propose efficient personalized
treatments, based on combining patient outcomes with massive datasets of
clinical data. This predictive capability of Al in both medical diagnostics
and treatment is transforming the healthcare landscape by leading not only
to better patient outcomes but also to significantly reduced healthcare
costs.

Al in oncology

Al advancements have also gained a lot of significance in the realm of
oncology by demonstrating their immense potential to enhance cancer
diagnostic accuracy, improve early-stage detection rates and suggest the
most effective tailor-made treatments. A PubMed search in May of 2022
of machine learning cross referenced with cancer revealed around 26,000
citations, more than 60% of these being published in the past five years,
evincing the rapid expansion of the use of Al in cancer care. There have
been numerous indicative studies in this field.

A study by Shaikh and Rao (2021) leveraged machine learning to spot
minute and precise patterns in histopathological data by using various
models. Notably, artificial neural networks (ANN), support vector
machines (SVM), and decision trees (DT), were implemented to classify
patients into high or low risk categories.

Islam et al. (2022) focused on breast cancer prediction by comparing
the performance of DTs, random forests (RF), extreme gradient boosting
(XGBoost), Naive Bayes (NB), and more, to determine the most effective
algorithm for classifying breast cancer using newly collected datasets.
Their results showed that the RF and XGBoost achieved the highest
accuracy of 94%, demonstrating the effectiveness of an ensemble of ML
models to improve predictive performance.

Chip M. Lynch et al. (2017) focused on predicting lung cancer patient
survival times by applying linear regression (LR), DTs, Gradient Boosting
Machines (GBM), SVMs, and a custom ensemble model to analyze
attributes such as tumor grade, size, gender, age, and stage, thus treating
the survival predictions as a continuous target, rather than a classification
problem. Among their set of models, GBM performed the best with a Root
Mean Squared Error (RMSE) of 15.32, while the DTs struggled, likely due
to limited discrete outputs.

Panayiotis Petousis et al. (2016) assisted in informing decisions about
lung cancer screening by developing and evaluating Dynamic Bayesian
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Networks (DBNs) and leveraging longitudinal data for enhanced decision
making. The team incorporated factors such as demographics, smoking
history, cancer risk factors, and LDCT screening outcomes. Their study
showed that DBNs outperformed logistic regression (LR) and NB,
evincing strong predictive accuracy and reliability in identifying high-risk
lung cancer patients.

Al cancer prediction models typically utilize a variety of data features
to help detect the disease at its earliest possible stage, basing decisions
purely on objective facts by comparing past and present cases. Such a
prediction classifier model can play a huge role in the healthcare industry,
with its potential use as a quick, real-time predictor, helping not only make
an educated prediction on a diagnosis, but also potentially correcting
doctors’ accidental and systematic errors (Conger, 2025).

Al in early pancreatic cancer detection

In the field of pancreatic cancer early detection, Al-assisted diagnostic
techniques are also gaining more attention, particularly in image-based
detection, where Al tools can help in identifying pancreatic lesions in
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT)
images, which would be challenging to recognize or quantify by the

human eye. However, such tests are not usually performed when there are
no apparent symptoms, both due to financial reasons and risks associated
with these tests. This becomes an issue in the case of pancreatic cancer, for
which symptoms do not show until the late-stage phase of the illness.
Therefore, the use of appropriate endogenous blood or urine biomarkers
could be an essential aspect of the early diagnosis of pancreatic cancer,
especially in high-risk populations which could regularly be monitored for
these biomarkers.

Pancreatic cancer detection based on biomarkers is facing some
challenges: pancreatic tumors are highly heterogeneous between
individuals; singular biomarkers do not have high enough sensitivity, and
there are currently no biomarkers validated for early detection of PDAC.
Nevertheless, past studies have pointed to some certain biomarkers which
show some potential to be included in a robust set of high-specificity
biomarkers. These biomarkers could be further analyzed by Al for their
association with pancreatic cancer, and, therefore, included in a routine
test for early diagnosis of the disease. Some of these promising biomarkers
are the proteins LY VE-1, REG1B, and TFF1, creatinine and plasma
CA19-9 found in urine samples (Huang et al., 2022).

Objective of this research

This research paper aims to address the pressing challenge outlined to
predict pancreatic cancer using past case data of urinary biomarkers, by
developing four machine learning classifier models—Neural Network
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(NN), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbors
(KNN). The NN helps establish a benchmark for leveraging nonlinear
dependencies in the data, as is later explored, providing a ‘standard.” The
other three models help evaluate and strengthen the reliability of the
results and enhance the robustness of the predictions. However, solely
relying on any of the four fundamental models can introduce doubts and
limitations, therefore a Multiplicative Weight Update (MWU) system was
developed to combine and aggregate the predictions of individual
classifiers and enhance overall accuracy. The MWU combines the
strengths of each individual model, assigning weights to each based on
their testing data performance, and iteratively updating said weights to
improve the final prediction accuracy. In turn, the MWU allows the most
statistically reliable predictions to have a greater toll on the final
prediction, creating a more robust and accurate classification system.

Results
A variety of scores were achieved by each model. Evaluation of the results
was based solely on model accuracy for the following reason: the task
involved a three-class classification problem (classes 0, 1, and 2), with the
dataset being fully balanced (each class comprising one-third of the data).
Consequently, evaluation metrics such as precision, recall, or F1 score
were not considered, as they are typically applied in binary classification
tasks with imbalanced datasets.

For the Neural Network, the following hyperparameter combinations
were used in attempt to obtain the highest testing accuracy:

hidden_layer options = [(128, 64, 32), (500, 250, 150, 2), (256, 128,
64)]

learning_rate_options = [0.001, 0.01, 0.1]

alpha options =[0.0001, 0.001, 0.01]

The best outcome was achieved by the hyperparameters below, reaching a
testing accuracy of 85.1%

'hidden_layer sizes": (128, 64, 32)
'learning_rate init'": 0.1

‘alpha': 0.0001

'epochs trained': 24

For the Decision Tree, the max_depth was optimized with a step of
two, and the most accurate test accuracy came out at 98.7%, with a
max_depth of 20.

For the Random Forrest, different values for the number of estimators
and the max_depth were experimented, and the best performance was
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achieved when n_estimators was 100 and max_depth was 22, reaching
96.2% testing accuracy.

Finally, K-Nearest Neighbor’s prediction accuracy was tested with
different values for the number of neighbors, the highest accuracy
reaching 98.1% at 5 neighbors.

Using the MWU, each model was assigned an initial weight of 1, but
the weight was dynamically adjusted based on each distinctive model’s
performance. Below are the final weights of each model:

Model Weight
NN 165 (22.45%)
DT 192 (26.12%)
RF 187 (25.44%)

KNN 191 (25.99%)

TABLE 1: Table showing the different weights of each model at the end of
testing,

Materials and method

Data set & features

The data set used was imported from Kaggle as a CSV file (Davis, 2021).
Specifically, by importing the Kaggle library, the data set could then be
accessed using just its URL link.

The dataset consists of 590 individuals, with key features including
four urinary proteomic biomarkers: LYVE1, REG1B, TFF1, and creatinine
(Debernardi et al., 2020). While LYVE1, REG1B, and TFF1 serve as
potential biomarkers for pancreatic cancer, creatinine is used for
normalization to account for variations in urine concentration
(Yip-Schneider et al., 2020).

Along with urinary biomarkers, the model also uses other features
from the dataset to improve its accuracy and reliability, including the sex
of the patients, their age, and their Plasma CA19-9.

Firstly, the lymphatic vessel endothelial hyaluronan receptor 1
(LYVE1) biomarker is a glycoprotein found mostly in lymphatic
endothelial cells. LYVE]1 is commonly associated with lymphatic vessel
function, however recent studies have explored its potential as a biomarker
in various diseases, including cancer (Jackson, 2018). In the context of
pancreatic cancer, LYVE] has been identified as a non-invasive biomarker
due to its changed expression in early-stage malignancies. For more
information about LYVEI, see Appendix A.1. Figure 2 demonstrates the
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very strong correlation between elevated LYVEI levels and PDAC,
showing a p value of 0.0006.
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FIGURE 2. Graph showing LYVE-1 levels in differently diagnosed patients
(Yip-Schneider et al., 2020).

Additionally, a study by Ali N et al in 2024 showed that elevated
REGIB levels in blood and especially urine correlate with early-stage
PDAC, likely because of the cancer’s impact on pancreatic tissue,
triggering regenerative and inflammatory responses that lead to higher
REGI1B secretion. For more information about REG1B, see Appendix
A2.

Furthermore, TFF1, being a small secretory protein, also exhibits
elevated levels in PDAC patients. Ali N et al.’s study has suggested that
increased urinary TFF1 levels are associated with early stage PDAC,
likely due the cancer’s influence on the gastrointestinal environment and
epithelial cell turnover, causing secretion of TFF1. For more information
about TFF1, see Appendix A.3.

Moreover, in PDAC patients, CA 19-9 becomes heightened because
of increased tumor cell secretion and impaired clearance caused by biliary
obstruction, a common circumstance of PDAC. Although high CA 19-9
levels can also be observed in non-cancerous pancreatic conditions,
steadily and consistently elevated levels are strong associated with PDAC.
For more information about CA 19-9, see Appendix A .4.
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Table 2 shows the biomarker concentrations in different clinical
groups (healthy, non-cancerous condition, and PDAC), demonstrating that
PDAC patients exhibit significantly elevated biomarker levels compared
to other groups.

Markers Healthy Benign PDAC P-value ©

Median (IQR) Median (IQR) Median (IQR) Hvs B H vs PDAC B vs PDAC

uCRP (ng/mL) 0.508 (0.508-0.508) 0.508 (0.508-0.508) 0.508 (0.508-7.34) 0.717 <0.001 < 0.001
bCRP (mg/L)* 1.55 (0.78-3.13) 3.5(1.9-13.5) 12.5 (3.5-45) 0.012 <0.001 0.003

CA19-9 (kU/L) 5(1.2-8) 13 (7-25) 217 (41-981) < 0.001 <0.001 <0.001
REG1B (ng/mL) 9.88 (4.95-31.52) 19.86 (5.85-62.13) 105.84 (25.28-500) 0.053 <0.001 <0.001
LYVE1(ng/mL) 4.44 (0.4-17.04) 12.39 (3.92-28.77) 36.4 (16.23-92.6) < 0.01 <0.001 < 0.001

TFF1 (ng/mL) 0.23 (0.04-1.08) 0.83 (0.25-1.77) 2.7 (1.39-5.1) <0.01 <0.001 <0.001

TABLE 2: Biomarker concentrations across different groups (Al et al., 2024).

Finally, creatinine is a microfluidic waste product formed by the
breakdown of creatine phosphate in muscles. In the field of pancreatic
cancer, creatinine is not a direct urinary biomarker, but it is often
measured to standardize biomarker concentrations, such as TFF1, REG1B,
AND LYVEI. Normalizing typical biomarker levels against creatinine
helps achieve more accurate comparisons between patients, as differences
in biomarker levels due to kidney activity are accounted for and
standardized (Yip-Schneider et al., 2020). For more information about
creatinine, see Appendix A.5.

By analyzing these features, the models predict the diagnosis of a
patient, which returns either 1 (healthy sample), 2 (benign hepatobiliary
disease - non-cancerous pancreas condition), or 3 (pancreatic cancer
disease).

However, certain features used as input for the model’s training often
had null values, meaning some values were missing. Since the model
cannot train itself on non-existent data, all null values had to be replaced
by a value of 0. Additionally, the sklearn model can only be trained on
number values. Therefore, to include the sex as a feature, all “F” and “M”
values were replaced by -1 and 1 for female and male, respectively.

By operating at the cross-section of computational and medical
domains, this study offers valuable insights for clinicians by enabling the
discovery of novel patterns in biomarker data that may not have been
previously apparent. Moreover, models implemented in the study, notably
DTs and RFs, have strong interpretability, allowing clinicians to
understand the rationale behind ML predictions. This system helps support
more informed medical decisions and helps avoid the downfalls of relying
on a ‘black box’ of a healthcare system.
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Splitting the data
When creating a machine learning model, the entire data set must be
separated into training and testing data. When using data to train the
model, it’s difficult to know whether the model is truly learning or just
memorizing the training data given (or otherwise called overfitting).
Overfitting occurs when the model adapts itself and clings too closely to
patterns in the training data, therefore struggling with unseen data. This is
why the entire dataset must be split into training and testing sets, and as so
the model’s performance can truly be evaluated using data which it has
never encountered before.

The data was split using the train_test split function from sklearn,
which randomly put 33% of the data towards testing purposes, and 66% of
the data towards training purposes.

Building the Neural Network

A Neural Network consists of three components: the input layers (data
inputted), the hidden layers, and one output layer. The aim of a neural
network is to use parameters within the hidden layers in order to capture
nonlinear dependencies between the input and output. This particular
model uses such nonlinear dependencies in urinary biomarkers to predict
and output a patient’s diagnosis.

Lots of different structures were experimented with to find the
optimal topology that would result in the highest test accuracy, the final of
which was a network 4 hidden layers (with depths of 256, 128, and 64,
respectively), and as usual one output layer (diagnosis).

For more information about Neural Networks, see Appendix B.1.
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FIcURE 3: Visual demonstration of a simple Neural Network (Rojewska, 2023).

Building Decision Tree

A decision tree is a machine learning model that relies on a sequence
of nested "if-else" statements to make predictions. These statements act as
decision nodes, where the model evaluates certain conditions and criteria,
and branches the input data into different paths depending on the outcome
of each branch. At the end of every path is a leaf node, which provides the
model's final prediction.

For more information about Decision Trees, see Appendix B.2.

Root node

Internal node

Internal node

FIGURE 4: Visual demonstration of a simple Decision Tree (IBM, 2022).

Building K neighbors
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A K-Nearest Neighbor (KNN) model operates by predicting the label of a

data point by finding the majority class of its K closes neighbors in the

feature space. To calculate the majority class, the KNN relies on a distance

metric, such as Euclidean, to measure the similarities between two points.

The KNN has a variety of hyperparameters to help increase its accuracy.
For more information about KNN models, see Appendix B.3.
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FIGUrE 5: Visual demonstration of a KNIN (IBM, 2025).

Building random forest
A random forest is fundamentally a collection of multiple decision trees,
helping improve the predictions’ overall robustness and accuracy.
Decision trees come with a high risk of overfitting if their given depth is
too high; therefore, by aggregating the predictions of many decision trees
into one ensemble, the majority vote is likely to be more accurate.

For more information about Random Forests, see Appendix B.4.

EEE
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
L-{ Majority Voting / Averaging

Final Result

FIGURE 6: Visual demonstration of a Random Forres (Brital, 2021).
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Multiplicative weight update

The Multiplicative Weight Update (MWU) serves as the final stage of the
study. By employing this method, the program is able to combine the
multiple classifier models programmed. Rather than treating all models
equally, however, the MWU dynamically adjusts each model’s influence
based on its accuracy, ensuring that more reliable models contribute more
significantly to the final prediction.

Initially, each model is assigned an equal weight of 1, but as
predictions on the large testing data are made, correct classifications
increase a model’s weight, while misclassification keeps it unchanged.
This adaptive process allows the MWU system to adjust its weighting
strategy over time, prioritizing the best performing models. Consequently,
models that consistently generated high accuracies become more
influential in the final prediction, whereas those with recurrent
misclassifications dynamically lose impact relative to other models.

In the end, the final classification is determined using a weighted
majority vote, where each model’s vote is weighted by its
performance-based ‘score’. By utilizing a weighted majority vote, the
MWU system optimizes the decision-making process by undergoing
accuracy-driven adjustments rather than arbitrarily keeping all the models’
weights equal. As a result, this method ensures that the final classification
prediction reflects the collective strengths of all models, in turn enhancing
the robustness and reliability of the program.

Forward Pass in i-th layer Backward Pass in [-th layer

Loss Function L

Weight Update in [-th layer

FIGURE 7: Lllustration of Multiplicative Weight Update in model training with
logarithmic number system (Anandkumar et al., 2022).

While MWU is a method widely used in machine learning
applications, its use in the medical field has been relatively limited. There
are however papers, such as that published by Chawla S. in 2020, which
leverage an MWU-style framework to scale large LP relaxations in
networked domains. Although somewhat experimental, MWU frameworks
have been leveraged in many fields, and could potentially present
significant advantages by combining models, each contributing its unique
strengths.
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Figure 8 illuminates how the algorithm is integrated: features taken in
as input are passed separately into each of four models — DT, NN, RF,
KNN - before these are weighed as part of the MWU to output a final
predicted diagnosis.

Input:
Sex

Age
Creatinine
Plasma CA 19-9
LYVE1

REG1B
TFF1

Random K-Nearest
Forrest Neighbors

Decision Tree

Output (1 0of3
classes)

Ficure 8: ML Flow diagram of Pancreatic Cancer Prediction model.

Conclusion

Methodology and key findings

This study aimed to address the challenge imposed by the difficulty of
early pancreatic cancer detection by developing a machine learning based
classification model that predicts a patient’s diagnosis using biological
indicators in bodily fluids, which have been previously identified as
potentially promising for early detection of the disease. To accomplish
this, four models were implemented and compared based on their
predictive accuracy and performance: NN, DT, RF, and KNN. The models
take patient age, sex, and urinary biomarker levels, to output a predicted
classification of the patient as either healthy, having benign hepatobiliary
disease, or pancreatic cancer. Taking into consideration the fact that each
model had limitations, a Multiplicative Weight Update (MWU) method
was applied to dynamically adjust each model’s influence on the final
prediction based on their accuracy, producing more robust and reliable
final predictions. The results demonstrate with very high predictive
accuracy the potential of Al-driven diagnostic tools in assisting early
pancreatic cancer detection based on urine and blood biomarkers, helping
potentially enhance the currently grim survival rates of pancreatic cancer.

Implications for practice

By applying the findings of this study to real-time practices, the promising
and accessible set of urine and blood biomarkers used (LYVE1, REG1B,
TFF1, Creatinine, Plasma CA19-9) could serve as a routine screening tool
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for the early detection of pancreatic cancer in high-risk individuals. These
individuals would be identified based on factors such as their medical and
family history, age and sex. Depending on the results of this initial
screening, the healthcare system could then prioritize certain patients for
additional diagnostic procedures, such as imaging tests, that are more
costly and carry some risk, to detect the certain presence of the disease.
This approach would enhance early detection of PDAC and therefore
treatment effectiveness, while minimizing the financial burden on the
healthcare system and the additional risks to the patients. If such an
approach were to be implemented in healthcare, there would be a need to
establish a framework defining the specific characteristics of high-risk
individuals as well as the threshold of the biomarkers which would trigger
the performance of additional diagnostic procedures. This would, in turn,
probably require further research.

Limitations and future direction

The use of the four distinct classification models, along with the MWU
method, distinguishes this research from previous studies on pancreatic
cancer biomarkers and helps enhance its predictive performance.
However, a limitation of the study is its inadequate sample size of just 590
individuals, relative to the global prevalence of pancreatic cancer. For
context, in the United States alone, an estimated 107,988 people were
living with pancreatic cancer in 2022 (NIH, 2011). This limited sample
may have influenced the study’s findings, particularly if the data reflects
gene mutations which are specific in certain populations, thus limiting the
ability to fully generalize the results. Future studies on early detection of
pancreatic cancer should therefore address this issue by increasing the
sample size.

Ethical considerations

In this study, we ensured that the dataset was balanced by sex (50% male,
50% female) to minimize gender-related bias. Additionally, the dataset
does not contain any features that directly identify individual participants,
hence protecting privacy and data security.

Expanding the horizons of Al in healthcare and its ethical
implications

This study also prompts the consideration of how every model mentioned
in this research can be used in a wider spectrum. For instance, one could
explore the implementation of Al to make predictions about a different
factor, such as classifying patients based on their cancer risk. On a more
global scale, machine learning could be exploited by the healthcare and
pharmaceutical industries in a variety of applications. With remarkable
capabilities in pattern spotting, such algorithms could be leveraged to
advance research on gene mutations, optimize vaccine development, or
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enhance personalized medicine by tailoring treatments to individual
patient profiles based on genetic and biomarker data. The list of
applications in healthcare and pharmaceuticals is extensive.

Despite Al’s unparalleled advantages in healthcare, it’s ethical
implications in clinical fields should not be ignored. There are several
concerns such as the risk that an Al algorithm may include bias towards a
gender or race, because of heterogeneity between a dataset representing a
given cancer population and other patients. Another concern is the need
for researchers and healthcare organizations to protect data for patient
privacy. In addition, healthcare systems should ensure equitable access for
all patients to the benefits of Al-driven tools (Hantel et al., 2022). To
alleviate these concerns, the development of standards and processes for
Al's ethical development and application in healthcare is of utmost
importance.
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Appendix A:

Urinary Biomarker details:

1. LYVEI1: The lymphatic vessel endothelial hyaluronan receptor 1
(LYVELI) biomarker is a glycoprotein found mostly in lymphatic
endothelial cells. LYVE]1 is commonly associated with lymphatic
vessel function, however recent studies have explored its potential
as a biomarker in various diseases, including cancer (Jackson,
2018). In the context of pancreatic cancer, LY VE1 has been
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identified as a non-invasive biomarker due to its changed
expression in early-stage malignancies. More specifically,
researchers have found that urinary LY VEI levels are elevated in
patients with pancreatic ductal adenocarcinoma (PDAC) - the most
common and aggressive type of pancreatic cancer - compared to
healthy individuals (Yip-Schneider et al., 2020). This is likely due
to the cancer’s impact on the lymphatic system, which in turn leads
to increased secretion of LY VEI into bodily fluids such as urine.
Although not enough on its own, the measurement of urinary
LYVEI levels provides a potential non-invasive approach for early
detection.

. REGI1B: The regenerating islet-derived protein 1 beta (REG1B)
biomarker is a secretory protein primarily expressed in the
pancreas and gastrointestinal tract. A study by Ali N et al in 2024
showed that elevated REG1B levels in blood and especially urine
correlate with early-stage PDAC, likely because of the cancer’s
impact on pancreatic tissue, triggering regenerative and
inflammatory responses that lead to higher REG1B secretion.

It belongs to a family of proteins (REG) which are typically
involved in tissue regeneration, cell proliferation, and
inflammation. Particularly, REG1B plays role in maintaining
pancreatic function, particularly in response to injury or stress.
Looking at its role in pancreatic cancer detection, REG1B can act
as a potential biomarker due to its increased expression in tumor
cells.

. TEF1: The Trefoil Factor 1 (TFF1) biomarker is a small secretory
protein, expressed mostly in the mucosal lining of the
gastrointestinal tract, which plays a role in mucosal protection,
repair, and cell migration. TFF1 can act as a potential indicator of
pancreatic cancer due to its altered expression in tumor cells. Ali N
et al.’s study has suggested that increased urinary TFF1 levels are
associated with early stage PDAC, likely due the cancer’s
influence on the gastrointestinal environment and epithelial cell
turnover, causing secretion of TFF1.

Plasma CA 19-9: Plasma CA 19-9, while not a urinary biomarker,
is a blood-based tumor marker which is commonly used as a
means of pancreatic cancer detection. Plasma CA 19-9 measures
the blood plasma levels of CA 19-9 monoclonal antibody, a
glycoprotein produced by pancreatic ductal epithelial cells. In
PDAC patients, CA 19-9 becomes heightened because of increased
tumor cell secretion and impaired clearance caused by biliary
obstruction, a common circumstance of PDAC. Although high CA
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19-9 levels can also be observed in non-cancerous pancreatic
conditions, steadily and consistently elevated levels are strong
associated with PDAC.

Creatinine: Finally, creatinine is a microfluidic waste product
formed by the breakdown of creatine phosphate in muscles. It gets
filtered out by the kidneys and excreted in urine, therefore acting
as a widely recognized marker for kidney health. In the field of
pancreatic cancer, creatinine is not a direct urinary biomarker, but
it is often measured to standardize biomarker concentrations, such
as TFF1, REG1B, AND LY VEI. Taking into consideration the fact
that urine dilution can vary based on hydration and kidney
function, normalizing typical biomarker levels against creatinine
helps achieve more accurate comparisons between patients, as
differences in biomarker levels due to kidney activity are
accounted for and standardized (Yip-Schneider et al., 2020).

Appendix B:

ML Model details:

1.

Neural Network: A Neural Network consists of three
components: the input layers (data inputted), the hidden layers, and
one output layer. The aim of a neural network is to use parameters
within the hidden layers to capture nonlinear dependencies
between the input and output. This model uses such nonlinear
dependencies in urinary biomarkers to predict and output a
patient’s diagnosis.

Lots of different structures were experimented with to find the
optimal topology that would result in the highest test accuracy, the
final of which was a network 4 hidden layers (with depths of 256,
128, and 64, respectively), and as usual one output layer
(diagnosis).

There were hyperparameters that could also be taken into
consideration when creating this model, as each could affect the
model’s testing accuracy. The ‘learning rate’ hyperparameter, for
example, determines how aggressively the network changes its
weights (within hidden layers) during its training. With a high
learning rate, the weights would be changed drastically during the
training process, and vice versa with a low training rate. This
model uses a constant learning rate which does not change
throughout the training phase.
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2. Decision Tree: A decision tree is a machine learning model that
relies on a sequence of nested "if-else" statements to make
predictions. These statements act as decision nodes, where the
model evaluates certain conditions and criteria, and branches the
input data into different paths depending on the outcome of each
branch. At the end of every path is a leaf node, which provides the
model's final prediction.

In this model, the maximum depth of the tree, which determines
the maximum number of decision nodes along any path before
reaching a leaf node, was carefully tuned to maximize the testing
accuracy. Experimentation with various maximum depths was
conducted, varying from a depth of 1 to 20, because, although a
deeper tree can better capture complex patterns in the data, it also
risks overfitting to the training data. On the other hand, a tree too
shallow might generalize better but could underfit the data, leading
to lower accuracy.

Finally, after testing all depths in said range, a decision of keeping
a maximum depth of 17 was reached as this achieved the highest
test accuracy without overfitting to the training data.

3. K-Nearest Neighbors: A K-Nearest Neighbor (KNN) model
operates by predicting the label of a data point by finding the
majority class of its K closes neighbors in the feature space. To
calculate the majority class, the KNN relies on a distance metric,
such as Euclidean, to measure the similarities between two points.
The KNN has a variety of hyperparameters to help increase its
accuracy:

Most importantly, the n neighbors parameter determines the
number of nearest data points considered when making a
prediction, with a higher value leading to closer decision
boundaries but also potentially reducing the model’s sensitivity to
different local patterns.

After testing several values for n neighbors, measuring the four
closest data points achieves the highest test accuracy.

4. Random Forrest: A random forest is fundamentally a collection
of multiple decision trees, helping improve the predictions’ overall
robustness and accuracy. Decision trees come with a high risk of
overfitting if their given depth is too high; therefore, by
aggregating the predictions of many decision trees into one
ensemble, the majority vote is likely to be more accurate.
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The model takes several hyperparameters, notably max depth and n
estimators. Like the decision tree, max depth controls the depth of
each decision tree, and n estimators controls how many different
trees make up the random forest.
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