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Abstract 
Pancreatic cancer is one of the deadliest malignancies due to its late-stage 
diagnosis and lack of effective early detection tools. Existing detection and 
screening methods currently fail to identify the tumor at its early, more 
treatable stages, contributing to persistently low survival rates and 
necessitating alternative approaches. However, in recent times, machine 
learning (ML), which is a branch of artificial intelligence (AI), has shown 
immense promise in the field, potentially enhancing early cancer detection 
by identifying minute and subtle patterns in clinical data. This study 
explores the application of machine learning and deep learning in the 
prediction of pancreatic cancer, using notably as input a set of patient 
urinary and blood biomarkers identified in previous studies as potentially 
promising for early detection of pancreatic cancer. The goal, after all, of 
this study is to predict the presence of the disease before it is diagnosed. 
Four classification models (Neural Network, Decision Tree, Random 
Forest, and K-Nearest Neighbors) were implemented to analyze the data 
features, classifying individuals as healthy, having benign hepatobiliary 
disease, or having pancreatic cancer. To further improve prediction 
reliability, a Multiplicative Weight Update (MWU) method was applied to 
dynamically adjust the influence of each model based on their testing 
performance, finally forming an overall more robust and accurate 
program. The integration of four distinct classification models, in tandem 
with the MWU method, distinguishes this research from previous studies 
and enhances its predictive performance. Given the varying concentrations 
of biomarkers associated with different pancreatic conditions, the use of 
multiple diverse models to capture both linear and complex non-linear 
patterns in the biomarker data was particularly important, something prior 
studies relying on individual models rarely achieved. As a result, the final 
prediction accuracy was significantly improved. The results demonstrate 
high accuracies for most models, with the Decision Tree achieving the 
highest predictive accuracy of 98.7%. These results highlight the potential 
of AI-driven diagnostic tools in improving early pancreatic cancer 
detection.  
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Introduction 
Pancreatic cancer is one of the most lethal tumors, partially due to its 
difficulty of early detection and the absence of existing detection tools in 
the industry. By the time symptoms of this malignant cancer appear, the 
disease is far too advanced, drastically reducing therapeutic options and 
resulting in dismal survival rates. Historical data shows that the 10-year 
survival rate for pancreatic cancer has remained at a meager 1% both in 
1971 and 2011, showing no improvement despite advancements in cancer 
research and treatment methods. On the other hand, other cancers such as 
testicular, skin, breast, and prostate, have seen dramatic increases in their 
long-term survival rates over the same period (Ali, 2016). Such static 
survival outcomes urgently call for an innovative solution, and with the 
constant advancements of AI-driven methodologies, machine learning can 
most certainly be effectively leveraged to help advance this cause, and 
detect malignancy at more treatable stages, hence potentially altering and 
improving its historically grim prognosis and survival rates.  
 

 
FIGURE 1: 10-year survival rates of different cancers in 1971 vs 2011 (Ali, 
2016). 

 
AI in healthcare  
Artificial intelligence and machine learning, a branch of artificial 
intelligence, have already and are yet to further revolutionize the medical 
and pharmaceutical sectors, offering faster, more efficient, and more 
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accurate diagnosis and treatment for potentially life-threatening diseases. 
By employing a variety of statistical, probabilistic and optimization 
techniques, AI technologies offer the possibility to analyze and process 
vast amounts of clinical data, from medical records to medical imaging, as 
well as identify patterns that would not be easily identifiable by humans. 
In this way, they enable early and precise disease diagnosis through 
analysis of subtle changes in patients’ vital signs, medical imaging, 
histopathology slides or biometrics, and propose efficient personalized 
treatments, based on combining patient outcomes with massive datasets of 
clinical data. This predictive capability of AI in both medical diagnostics 
and treatment is transforming the healthcare landscape by leading not only 
to better patient outcomes but also to significantly reduced healthcare 
costs.  
 
 
AI in oncology 
AI advancements have also gained a lot of significance in the realm of 
oncology by demonstrating their immense potential to enhance cancer 
diagnostic accuracy, improve early-stage detection rates and suggest the 
most effective tailor-made treatments. A PubMed search in May of 2022 
of machine learning cross referenced with cancer revealed around 26,000 
citations, more than 60% of these being published in the past five years, 
evincing the rapid expansion of the use of AI in cancer care. There have 
been numerous indicative studies in this field. 

A study by Shaikh and Rao (2021) leveraged machine learning to spot 
minute and precise patterns in histopathological data by using various 
models. Notably, artificial neural networks (ANN), support vector 
machines (SVM), and decision trees (DT), were implemented to classify 
patients into high or low risk categories.  

Islam et al. (2022) focused on breast cancer prediction by comparing 
the performance of DTs, random forests (RF), extreme gradient boosting 
(XGBoost), Naïve Bayes (NB), and more, to determine the most effective 
algorithm for classifying breast cancer using newly collected datasets. 
Their results showed that the RF and XGBoost achieved the highest 
accuracy of 94%, demonstrating the effectiveness of an ensemble of ML 
models to improve predictive performance. 

Chip M. Lynch et al. (2017) focused on predicting lung cancer patient 
survival times by applying linear regression (LR), DTs, Gradient Boosting 
Machines (GBM), SVMs, and a custom ensemble model to analyze 
attributes such as tumor grade, size, gender, age, and stage, thus treating 
the survival predictions as a continuous target, rather than a classification 
problem. Among their set of models, GBM performed the best with a Root 
Mean Squared Error (RMSE) of 15.32, while the DTs struggled, likely due 
to limited discrete outputs. 

Panayiotis Petousis et al. (2016) assisted in informing decisions about 
lung cancer screening by developing and evaluating Dynamic Bayesian 
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Networks (DBNs) and leveraging longitudinal data for enhanced decision 
making. The team incorporated factors such as demographics, smoking 
history, cancer risk factors, and LDCT screening outcomes. Their study 
showed that DBNs outperformed logistic regression (LR) and NB, 
evincing strong predictive accuracy and reliability in identifying high-risk 
lung cancer patients. 

AI cancer prediction models typically utilize a variety of data features 
to help detect the disease at its earliest possible stage, basing decisions 
purely on objective facts by comparing past and present cases. Such a 
prediction classifier model can play a huge role in the healthcare industry, 
with its potential use as a quick, real-time predictor, helping not only make 
an educated prediction on a diagnosis, but also potentially correcting 
doctors’ accidental and systematic errors (Conger, 2025). 
 
 
AI in early pancreatic cancer detection 
In the field of pancreatic cancer early detection, AI-assisted diagnostic 
techniques are also gaining more attention, particularly in image-based 
detection, where AI tools can help in identifying pancreatic lesions in 
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) 
images, which would be challenging to recognize or quantify by the 
human eye. However, such tests are not usually performed when there are 
no apparent symptoms, both due to financial reasons and risks associated 
with these tests. This becomes an issue in the case of pancreatic cancer, for 
which symptoms do not show until the late-stage phase of the illness. 
Therefore, the use of appropriate endogenous blood or urine biomarkers 
could be an essential aspect of the early diagnosis of pancreatic cancer, 
especially in high-risk populations which could regularly be monitored for 
these biomarkers.  

Pancreatic cancer detection based on biomarkers is facing some 
challenges: pancreatic tumors are highly heterogeneous between 
individuals; singular biomarkers do not have high enough sensitivity, and 
there are currently no biomarkers validated for early detection of PDAC. 
Nevertheless, past studies have pointed to some certain biomarkers which 
show some potential to be included in a robust set of high-specificity 
biomarkers. These biomarkers could be further analyzed by AI for their 
association with pancreatic cancer, and, therefore, included in a routine 
test for early diagnosis of the disease. Some of these promising biomarkers 
are the proteins LYVE-1, REG1B, and TFF1, creatinine and plasma 
CA19-9 found in urine samples (Huang et al., 2022). 
 
 
Objective of this research 
This research paper aims to address the pressing challenge outlined to 
predict pancreatic cancer using past case data of urinary biomarkers, by 
developing four machine learning classifier models—Neural Network 
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(NN), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbors 
(KNN). The NN helps establish a benchmark for leveraging nonlinear 
dependencies in the data, as is later explored, providing a ‘standard.’ The 
other three models help evaluate and strengthen the reliability of the 
results and enhance the robustness of the predictions. However, solely 
relying on any of the four fundamental models can introduce doubts and 
limitations, therefore a Multiplicative Weight Update (MWU) system was 
developed to combine and aggregate the predictions of individual 
classifiers and enhance overall accuracy. The MWU combines the 
strengths of each individual model, assigning weights to each based on 
their testing data performance, and iteratively updating said weights to 
improve the final prediction accuracy. In turn, the MWU allows the most 
statistically reliable predictions to have a greater toll on the final 
prediction, creating a more robust and accurate classification system. 
 
 
 
Results 
A variety of scores were achieved by each model. Evaluation of the results 
was based solely on model accuracy for the following reason: the task 
involved a three-class classification problem (classes 0, 1, and 2), with the 
dataset being fully balanced (each class comprising one-third of the data). 
Consequently, evaluation metrics such as precision, recall, or F1 score 
were not considered, as they are typically applied in binary classification 
tasks with imbalanced datasets. 

For the Neural Network, the following hyperparameter combinations 
were used in attempt to obtain the highest testing accuracy: 
 
hidden_layer_options = [(128, 64, 32), (500, 250, 150, 2), (256, 128, 
64)] 
learning_rate_options = [0.001, 0.01, 0.1] 
alpha_options = [0.0001, 0.001, 0.01] 

 
The best outcome was achieved by the hyperparameters below, reaching a 
testing accuracy of 85.1% 
 
'hidden_layer_sizes': (128, 64, 32) 
'learning_rate_init': 0.1 
'alpha': 0.0001 
'epochs_trained': 24 

 
For the Decision Tree, the max_depth was optimized with a step of 

two, and the most accurate test accuracy came out at 98.7%, with a 
max_depth of 20.  

For the Random Forrest, different values for the number of estimators 
and the max_depth were experimented, and the best performance was 
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achieved when n_estimators was 100 and max_depth was 22, reaching 
96.2% testing accuracy. 
 

Finally, K-Nearest Neighbor’s prediction accuracy was tested with 
different values for the number of neighbors, the highest accuracy 
reaching 98.1% at 5 neighbors. 

Using the MWU, each model was assigned an initial weight of 1, but 
the weight was dynamically adjusted based on each distinctive model’s 
performance. Below are the final weights of each model: 
 

Model Weight 

NN 165 (22.45%) 

DT 192 (26.12%) 

RF 187 (25.44%) 

KNN 191 (25.99%) 
TABLE 1: Table showing the different weights of each model at the end of 
testing. 

 
Materials and method 
Data set & features 
The data set used was imported from Kaggle as a CSV file (Davis, 2021). 
Specifically, by importing the Kaggle library, the data set could then be 
accessed using just its URL link.  

The dataset consists of 590 individuals, with key features including 
four urinary proteomic biomarkers: LYVE1, REG1B, TFF1, and creatinine 
(Debernardi et al., 2020). While LYVE1, REG1B, and TFF1 serve as 
potential biomarkers for pancreatic cancer, creatinine is used for 
normalization to account for variations in urine concentration 
(Yip-Schneider et al., 2020). 

Along with urinary biomarkers, the model also uses other features 
from the dataset to improve its accuracy and reliability, including the sex 
of the patients, their age, and their Plasma CA19-9. 

Firstly, the lymphatic vessel endothelial hyaluronan receptor 1 
(LYVE1) biomarker is a glycoprotein found mostly in lymphatic 
endothelial cells. LYVE1 is commonly associated with lymphatic vessel 
function, however recent studies have explored its potential as a biomarker 
in various diseases, including cancer (Jackson, 2018). In the context of 
pancreatic cancer, LYVE1 has been identified as a non-invasive biomarker 
due to its changed expression in early-stage malignancies. For more 
information about LYVE1, see Appendix A.1. Figure 2 demonstrates the 
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very strong correlation between elevated LYVE1 levels and PDAC, 
showing a p value of 0.0006. 
 

 
FIGURE 2. Graph showing LYVE-1 levels in differently diagnosed patients 
(Yip-Schneider et al., 2020). 

 
Additionally, a study by Ali N et al in 2024 showed that elevated 

REG1B levels in blood and especially urine correlate with early-stage 
PDAC, likely because of the cancer’s impact on pancreatic tissue, 
triggering regenerative and inflammatory responses that lead to higher 
REG1B secretion. For more information about REG1B, see Appendix 
A.2. 

Furthermore, TFF1, being a small secretory protein, also exhibits 
elevated levels in PDAC patients. Ali N et al.’s study has suggested that 
increased urinary TFF1 levels are associated with early stage PDAC, 
likely due the cancer’s influence on the gastrointestinal environment and 
epithelial cell turnover, causing secretion of TFF1. For more information 
about TFF1, see Appendix A.3. 

Moreover, in PDAC patients, CA 19-9 becomes heightened because 
of increased tumor cell secretion and impaired clearance caused by biliary 
obstruction, a common circumstance of PDAC. Although high CA 19-9 
levels can also be observed in non-cancerous pancreatic conditions, 
steadily and consistently elevated levels are strong associated with PDAC. 
For more information about CA 19-9, see Appendix A.4. 
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Table 2 shows the biomarker concentrations in different clinical 
groups (healthy, non-cancerous condition, and PDAC), demonstrating that 
PDAC patients exhibit significantly elevated biomarker levels compared 
to other groups. 
 

 
TABLE 2: Biomarker concentrations across different groups (Ali et al., 2024). 

 
Finally, creatinine is a microfluidic waste product formed by the 

breakdown of creatine phosphate in muscles. In the field of pancreatic 
cancer, creatinine is not a direct urinary biomarker, but it is often 
measured to standardize biomarker concentrations, such as TFF1, REG1B, 
AND LYVE1. Normalizing typical biomarker levels against creatinine 
helps achieve more accurate comparisons between patients, as differences 
in biomarker levels due to kidney activity are accounted for and 
standardized (Yip-Schneider et al., 2020). For more information about 
creatinine, see Appendix A.5. 

By analyzing these features, the models predict the diagnosis of a 
patient, which returns either 1 (healthy sample), 2 (benign hepatobiliary 
disease - non-cancerous pancreas condition), or 3 (pancreatic cancer 
disease). 

However, certain features used as input for the model’s training often 
had null values, meaning some values were missing. Since the model 
cannot train itself on non-existent data, all null values had to be replaced 
by a value of 0. Additionally, the sklearn model can only be trained on 
number values. Therefore, to include the sex as a feature, all “F” and “M” 
values were replaced by -1 and 1 for female and male, respectively. 

By operating at the cross-section of computational and medical 
domains, this study offers valuable insights for clinicians by enabling the 
discovery of novel patterns in biomarker data that may not have been 
previously apparent.  Moreover, models implemented in the study, notably 
DTs and RFs, have strong interpretability, allowing clinicians to 
understand the rationale behind ML predictions. This system helps support 
more informed medical decisions and helps avoid the downfalls of relying 
on a ‘black box’ of a healthcare system. 
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Splitting the data 
When creating a machine learning model, the entire data set must be 
separated into training and testing data. When using data to train the 
model, it’s difficult to know whether the model is truly learning or just 
memorizing the training data given (or otherwise called overfitting). 
Overfitting occurs when the model adapts itself and clings too closely to 
patterns in the training data, therefore struggling with unseen data. This is 
why the entire dataset must be split into training and testing sets, and as so 
the model’s performance can truly be evaluated using data which it has 
never encountered before. 

The data was split using the train_test_split function from sklearn, 
which randomly put 33% of the data towards testing purposes, and 66% of 
the data towards training purposes. 
 
 
Building the Neural Network 
A Neural Network consists of three components: the input layers (data 
inputted), the hidden layers, and one output layer. The aim of a neural 
network is to use parameters within the hidden layers in order to capture 
nonlinear dependencies between the input and output. This particular 
model uses such nonlinear dependencies in urinary biomarkers to predict 
and output a patient’s diagnosis. 

Lots of different structures were experimented with to find the 
optimal topology that would result in the highest test accuracy, the final of 
which was a network 4 hidden layers (with depths of 256, 128, and 64, 
respectively), and as usual one output layer (diagnosis). 

For more information about Neural Networks, see Appendix B.1. 
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FIGURE 3: Visual demonstration of a simple Neural Network (Rojewska, 2023). 

 
Building Decision Tree 

A decision tree is a machine learning model that relies on a sequence 
of nested "if-else" statements to make predictions. These statements act as 
decision nodes, where the model evaluates certain conditions and criteria, 
and branches the input data into different paths depending on the outcome 
of each branch. At the end of every path is a leaf node, which provides the 
model's final prediction. 

For more information about Decision Trees, see Appendix B.2. 

 
FIGURE 4: Visual demonstration of a simple Decision Tree (IBM, 2022). 

 
Building K neighbors 
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A K-Nearest Neighbor (KNN) model operates by predicting the label of a 
data point by finding the majority class of its K closes neighbors in the 
feature space. To calculate the majority class, the KNN relies on a distance 
metric, such as Euclidean, to measure the similarities between two points. 
The KNN has a variety of hyperparameters to help increase its accuracy. 

For more information about KNN models, see Appendix B.3. 

 
FIGURE 5: Visual demonstration of a KNN (IBM, 2025). 

 
Building random forest 
A random forest is fundamentally a collection of multiple decision trees, 
helping improve the predictions’ overall robustness and accuracy. 
Decision trees come with a high risk of overfitting if their given depth is 
too high; therefore, by aggregating the predictions of many decision trees 
into one ensemble, the majority vote is likely to be more accurate.  

For more information about Random Forests, see Appendix B.4. 

 
FIGURE 6: Visual demonstration of a Random Forres (Brital, 2021). 
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Multiplicative weight update 
The Multiplicative Weight Update (MWU) serves as the final stage of the 
study. By employing this method, the program is able to combine the 
multiple classifier models programmed. Rather than treating all models 
equally, however, the MWU dynamically adjusts each model’s influence 
based on its accuracy, ensuring that more reliable models contribute more 
significantly to the final prediction. 

Initially, each model is assigned an equal weight of 1, but as 
predictions on the large testing data are made, correct classifications 
increase a model’s weight, while misclassification keeps it unchanged. 
This adaptive process allows the MWU system to adjust its weighting 
strategy over time, prioritizing the best performing models. Consequently, 
models that consistently generated high accuracies become more 
influential in the final prediction, whereas those with recurrent 
misclassifications dynamically lose impact relative to other models.  

In the end, the final classification is determined using a weighted 
majority vote, where each model’s vote is weighted by its 
performance-based ‘score’.  By utilizing a weighted majority vote, the 
MWU system optimizes the decision-making process by undergoing 
accuracy-driven adjustments rather than arbitrarily keeping all the models’ 
weights equal. As a result, this method ensures that the final classification 
prediction reflects the collective strengths of all models, in turn enhancing 
the robustness and reliability of the program. 
 
 

 
FIGURE 7: Illustration of Multiplicative Weight Update in model training with 
logarithmic number system (Anandkumar et al., 2022). 

 
While MWU is a method widely used in machine learning 

applications, its use in the medical field has been relatively limited. There 
are however papers, such as that published by Chawla S. in 2020, which 
leverage an MWU-style framework to scale large LP relaxations in 
networked domains. Although somewhat experimental, MWU frameworks 
have been leveraged in many fields, and could potentially present 
significant advantages by combining models, each contributing its unique 
strengths. 
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Figure 8 illuminates how the algorithm is integrated: features taken in 
as input are passed separately into each of four models – DT, NN, RF, 
KNN – before these are weighed as part of the MWU to output a final 
predicted diagnosis. 

 
FIGURE 8: ML Flow diagram of Pancreatic Cancer Prediction model. 

Conclusion 
Methodology and key findings 
This study aimed to address the challenge imposed by the difficulty of 
early pancreatic cancer detection by developing a machine learning based 
classification model that predicts a patient’s diagnosis using biological 
indicators in bodily fluids, which have been previously identified as 
potentially promising for early detection of the disease. To accomplish 
this, four models were implemented and compared based on their 
predictive accuracy and performance: NN, DT, RF, and KNN. The models 
take patient age, sex, and urinary biomarker levels, to output a predicted 
classification of the patient as either healthy, having benign hepatobiliary 
disease, or pancreatic cancer. Taking into consideration the fact that each 
model had limitations, a Multiplicative Weight Update (MWU) method 
was applied to dynamically adjust each model’s influence on the final 
prediction based on their accuracy, producing more robust and reliable 
final predictions. The results demonstrate with very high predictive 
accuracy the potential of AI-driven diagnostic tools in assisting early 
pancreatic cancer detection based on urine and blood biomarkers, helping 
potentially enhance the currently grim survival rates of pancreatic cancer. 
 
Implications for practice 
By applying the findings of this study to real-time practices, the promising 
and accessible set of urine and blood biomarkers used (LYVE1, REG1B, 
TFF1, Creatinine, Plasma CA19-9) could serve as a routine screening tool 
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for the early detection of pancreatic cancer in high-risk individuals. These 
individuals would be identified based on factors such as their medical and 
family history, age and sex. Depending on the results of this initial 
screening, the healthcare system could then prioritize certain patients for 
additional diagnostic procedures, such as imaging tests, that are more 
costly and carry some risk, to detect the certain presence of the disease. 
This approach would enhance early detection of PDAC and therefore 
treatment effectiveness, while minimizing the financial burden on the 
healthcare system and the additional risks to the patients. If such an 
approach were to be implemented in healthcare, there would be a need to 
establish a framework defining the specific characteristics of high-risk 
individuals as well as the threshold of the biomarkers which would trigger 
the performance of additional diagnostic procedures. This would, in turn, 
probably require further research. 
 
 
Limitations and future direction 
The use of the four distinct classification models, along with the MWU 
method, distinguishes this research from previous studies on pancreatic 
cancer biomarkers and helps enhance its predictive performance. 
However, a limitation of the study is its inadequate sample size of just 590 
individuals, relative to the global prevalence of pancreatic cancer. For 
context, in the United States alone, an estimated 107,988 people were 
living with pancreatic cancer in 2022 (NIH, 2011). This limited sample 
may have influenced the study’s findings, particularly if the data reflects 
gene mutations which are specific in certain populations, thus limiting the 
ability to fully generalize the results. Future studies on early detection of 
pancreatic cancer should therefore address this issue by increasing the 
sample size.  
 
Ethical considerations 
In this study, we ensured that the dataset was balanced by sex (50% male, 
50% female) to minimize gender-related bias. Additionally, the dataset 
does not contain any features that directly identify individual participants, 
hence protecting privacy and data security.  
 
Expanding the horizons of AI in healthcare and its ethical 
implications 
This study also prompts the consideration of how every model mentioned 
in this research can be used in a wider spectrum. For instance, one could 
explore the implementation of AI to make predictions about a different 
factor, such as classifying patients based on their cancer risk. On a more 
global scale, machine learning could be exploited by the healthcare and 
pharmaceutical industries in a variety of applications. With remarkable 
capabilities in pattern spotting, such algorithms could be leveraged to 
advance research on gene mutations, optimize vaccine development, or 
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enhance personalized medicine by tailoring treatments to individual 
patient profiles based on genetic and biomarker data. The list of 
applications in healthcare and pharmaceuticals is extensive.  

Despite AI’s unparalleled advantages in healthcare, it’s ethical 
implications in clinical fields should not be ignored. There are several 
concerns such as the risk that an AI algorithm may include bias towards a 
gender or race, because of heterogeneity between a dataset representing a 
given cancer population and other patients. Another concern is the need 
for researchers and healthcare organizations to protect data for patient 
privacy. In addition, healthcare systems should ensure equitable access for 
all patients to the benefits of AI-driven tools (Hantel et al., 2022). To 
alleviate these concerns, the development of standards and processes for 
AI's ethical development and application in healthcare is of utmost 
importance.  
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Appendix A: 
 
Urinary Biomarker details: 
 

1.​ LYVE1: The lymphatic vessel endothelial hyaluronan receptor 1 
(LYVE1) biomarker is a glycoprotein found mostly in lymphatic 
endothelial cells. LYVE1 is commonly associated with lymphatic 
vessel function, however recent studies have explored its potential 
as a biomarker in various diseases, including cancer (Jackson, 
2018). In the context of pancreatic cancer, LYVE1 has been 
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identified as a non-invasive biomarker due to its changed 
expression in early-stage malignancies. More specifically, 
researchers have found that urinary LYVE1 levels are elevated in 
patients with pancreatic ductal adenocarcinoma (PDAC) - the most 
common and aggressive type of pancreatic cancer - compared to 
healthy individuals (Yip-Schneider et al., 2020). This is likely due 
to the cancer’s impact on the lymphatic system, which in turn leads 
to increased secretion of LYVE1 into bodily fluids such as urine. 
Although not enough on its own, the measurement of urinary 
LYVE1 levels provides a potential non-invasive approach for early 
detection. 
 

2.​ REG1B: The regenerating islet-derived protein 1 beta (REG1B) 
biomarker is a secretory protein primarily expressed in the 
pancreas and gastrointestinal tract. A study by Ali N et al in 2024 
showed that elevated REG1B levels in blood and especially urine 
correlate with early-stage PDAC, likely because of the cancer’s 
impact on pancreatic tissue, triggering regenerative and 
inflammatory responses that lead to higher REG1B secretion.  
 
It belongs to a family of proteins (REG) which are typically 
involved in tissue regeneration, cell proliferation, and 
inflammation. Particularly, REG1B plays role in maintaining 
pancreatic function, particularly in response to injury or stress. 
Looking at its role in pancreatic cancer detection, REG1B can act 
as a potential biomarker due to its increased expression in tumor 
cells.  

 
3.​ TFF1: The Trefoil Factor 1 (TFF1) biomarker is a small secretory 

protein, expressed mostly in the mucosal lining of the 
gastrointestinal tract, which plays a role in mucosal protection, 
repair, and cell migration. TFF1 can act as a potential indicator of 
pancreatic cancer due to its altered expression in tumor cells. Ali N 
et al.’s study has suggested that increased urinary TFF1 levels are 
associated with early stage PDAC, likely due the cancer’s 
influence on the gastrointestinal environment and epithelial cell 
turnover, causing secretion of TFF1. 

 
4.​ Plasma CA 19-9: Plasma CA 19-9, while not a urinary biomarker, 

is a blood-based tumor marker which is commonly used as a 
means of pancreatic cancer detection. Plasma CA 19-9 measures 
the blood plasma levels of CA 19-9 monoclonal antibody, a 
glycoprotein produced by pancreatic ductal epithelial cells. In 
PDAC patients, CA 19-9 becomes heightened because of increased 
tumor cell secretion and impaired clearance caused by biliary 
obstruction, a common circumstance of PDAC. Although high CA 
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19-9 levels can also be observed in non-cancerous pancreatic 
conditions, steadily and consistently elevated levels are strong 
associated with PDAC.  

 
5.​ Creatinine: Finally, creatinine is a microfluidic waste product 

formed by the breakdown of creatine phosphate in muscles. It gets 
filtered out by the kidneys and excreted in urine, therefore acting 
as a widely recognized marker for kidney health. In the field of 
pancreatic cancer, creatinine is not a direct urinary biomarker, but 
it is often measured to standardize biomarker concentrations, such 
as TFF1, REG1B, AND LYVE1. Taking into consideration the fact 
that urine dilution can vary based on hydration and kidney 
function, normalizing typical biomarker levels against creatinine 
helps achieve more accurate comparisons between patients, as 
differences in biomarker levels due to kidney activity are 
accounted for and standardized (Yip-Schneider et al., 2020). 
 

 
 

Appendix B: 
 
ML Model details: 
 

1.​ Neural Network: A Neural Network consists of three 
components: the input layers (data inputted), the hidden layers, and 
one output layer. The aim of a neural network is to use parameters 
within the hidden layers to capture nonlinear dependencies 
between the input and output. This model uses such nonlinear 
dependencies in urinary biomarkers to predict and output a 
patient’s diagnosis. 
 
Lots of different structures were experimented with to find the 
optimal topology that would result in the highest test accuracy, the 
final of which was a network 4 hidden layers (with depths of 256, 
128, and 64, respectively), and as usual one output layer 
(diagnosis). 
 
There were hyperparameters that could also be taken into 
consideration when creating this model, as each could affect the 
model’s testing accuracy. The ‘learning rate’ hyperparameter, for 
example, determines how aggressively the network changes its 
weights (within hidden layers) during its training. With a high 
learning rate, the weights would be changed drastically during the 
training process, and vice versa with a low training rate. This 
model uses a constant learning rate which does not change 
throughout the training phase.  
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2.​ Decision Tree: A decision tree is a machine learning model that 

relies on a sequence of nested "if-else" statements to make 
predictions. These statements act as decision nodes, where the 
model evaluates certain conditions and criteria, and branches the 
input data into different paths depending on the outcome of each 
branch. At the end of every path is a leaf node, which provides the 
model's final prediction. 
 
In this model, the maximum depth of the tree, which determines 
the maximum number of decision nodes along any path before 
reaching a leaf node, was carefully tuned to maximize the testing 
accuracy. Experimentation with various maximum depths was 
conducted, varying from a depth of 1 to 20, because, although a 
deeper tree can better capture complex patterns in the data, it also 
risks overfitting to the training data. On the other hand, a tree too 
shallow might generalize better but could underfit the data, leading 
to lower accuracy. 
 
Finally, after testing all depths in said range, a decision of keeping 
a maximum depth of 17 was reached as this achieved the highest 
test accuracy without overfitting to the training data. 

 
3.​ K-Nearest Neighbors: A K-Nearest Neighbor (KNN) model 

operates by predicting the label of a data point by finding the 
majority class of its K closes neighbors in the feature space. To 
calculate the majority class, the KNN relies on a distance metric, 
such as Euclidean, to measure the similarities between two points. 
The KNN has a variety of hyperparameters to help increase its 
accuracy: 
 
Most importantly, the n neighbors parameter determines the 
number of nearest data points considered when making a 
prediction, with a higher value leading to closer decision 
boundaries but also potentially reducing the model’s sensitivity to 
different local patterns. 
 
After testing several values for n neighbors, measuring the four 
closest data points achieves the highest test accuracy. 

 
4.​ Random Forrest: A random forest is fundamentally a collection 

of multiple decision trees, helping improve the predictions’ overall 
robustness and accuracy. Decision trees come with a high risk of 
overfitting if their given depth is too high; therefore, by 
aggregating the predictions of many decision trees into one 
ensemble, the majority vote is likely to be more accurate.  
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The model takes several hyperparameters, notably max depth and n 
estimators. Like the decision tree, max depth controls the depth of 
each decision tree, and n estimators controls how many different 
trees make up the random forest. 

 
21                                      Intersect, Vol 18, No 3 (2025) 

 


