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Arrhythmias, a form of cardiovascular disease, are a major contributor to
the high global mortality rate. Early detection of arrhythmias through
electrocardiogram (ECG) analysis can significantly improve patient
outcomes. This study investigates the application of var- ious machine
learning (ML) and deep learning models for the classification of
arrhythmias using ECG signals from the MIT-BIH Arrhythmia Dataset.
The models evaluated include Random Forest, Support Vector Machines
(SVM), Logistic Regression, Multilayer Perceptron (MLP), and
Convolutional Neural Networks (CNN). Additionally, feature selection
techniques, such as the Fourier Transform, were applied to enhance the
performance of the ML models. Among the models tested, the CNN
achieved the highest accuracy (89.29%), F1 score (85.69%), and AUC
(87.98%), demonstrating its superior ability in accurately detecting
arrhythmias. In contrast, traditional ML models, including Random Forest
and SVM, showed moderate performance with lower accuracy and
discriminatory power. The study highlights the potential of CNN-based
architectures for automated ECG analysis and emphasizes the importance
of integrating explainable Al techniques to increase the transparency and
clinical adoption of deep learning models. Future research could focus on
larger, more diverse datasets and the use of Recurrent Neural Networks
(RNNSs) for longer ECG recordings to improve classification performance
further.

Introduction

Cardiovascular diseases are the leading cause of mortality worldwide, with
over 16% of all deaths being caused by heart disease (2020). Among
various heart diseases, arrhythmias pose significant risks. Arrhythmias are
irregular heartbeats and can often be symptoms of underlying heart
conditions or other health problems. Untreated arrhythmias cause
complications like heart failure, stroke, or sudden cardiac arrest (Y. P. Sai
et al. 2020, pp. 1-6). Detecting arrhythmias early can significantly improve
patient outcomes and reduce healthcare costs. Given the benefits of early
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detection, exploring the use of machine learning (ML) models for
arrhythmia classification becomes vital, as these models can be used to
automatically and accurately detect arrhythmia. This paper aims to use
deep learning methods to classify arrhythmia using electrocardiogram
(ECQG) signals from the MIT-BIH Arrhythmia Dataset. The dataset
includes ECG recordings that cover a variety of arrhythmia, allowing
machine-learning algorithms to be trained to identify patterns in ECG
signals that indicate arrhythmia.
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Figure 1. An ECG waveform highlighting the important intervals, with the
QRS complex colored shaded in gray.

Significant advancements in machine learning and deep learning
approaches for arrhythmia detection have already been made. Despite this,
gaps remain in scalability, model adaptability, and performance
consistency across diverse datasets. For instance, Tsipouras et al. (2005,
pp. 237-250) achieved high accuracy using RR intervals for arrhythmia
classification. The RR interval, which represents the time between
successive R-peaks in an ECG signal (as shown in Figure 1), is a crucial
feature in heart rate variability analysis and is often used to detect
irregularities in cardiac rhythms. While effective in identifying
arrhythmias related to heart rate fluctuations, this method struggled to
generalize to other types, such as atrial fibrillation (AFib)—a condition
characterized by rapid and irregular electrical impulses that disrupt the
heart’s normal rhythm. Unlike arrhythmias primarily reflected in RR
interval variations. Similarly, the Optimum-Path Forest (OPF) model
introduced by Luz et al. (2013, pp. 3561-3573) showed promising F1
scores, but its complexity and scalability challenges made it less effective
on larger datasets. In another study, Shimpi et al. (2017, pp. 603—-607)
employed a Bag of Visual Words (BoVW) approach, which relied on
pre-extracted features. However, this method’s reliance on specific
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domain-based features limited its adaptability to different datasets and
ECG signal variations, underscoring the need for more flexible and
generalizable models.

This study moves beyond these limitations by leveraging a deep
learning architecture, specifically Convolutional Neural Networks
(CNNs), which can automatically extract features from raw ECG signals.
Unlike methods that rely heavily on pre-defined features like RR intervals
or specific waveform characteristics, CNNs can learn relevant patterns
directly from the data, making the model more flexible and capable of
identifying a wider range of arrhythmias. Additionally, the end-to-end
nature of the CNN architecture ensures that the model can handle both
temporal and spatial patterns in the ECG signals, providing a more
comprehensive analysis compared to traditional machine learning models.
This allows the model to be scalable and adaptable to larger datasets with
complex or noisy ECG signals, addressing the issues of generalization and
performance in real-world settings.

2 Related Works

2.1 Cardiac Arrhythmias Diagnosis

Traditionally, doctors diagnose cardiac arrhythmias with a comprehensive
review of the patient’s clinical history and physical examination, which
provides crucial information about the presence of any signs and
symptoms (Levy, 1991). This assessment directs them in selecting the
appropriate test. A primary tool used for diagnosis is the
electrocardiogram (ECG).

Flowchart for Machine Learning Models
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Figure 2. Flowchart of machine learning techniques used for ECG signal
classification.

ECGs record the electrical activity of the heart to identify the type and
severity of the arrhythmia (Levy, 1991). Interpreting an ECG reading
involves analyzing various components, including the P wave, PR interval,
QRS complex, ST segment, T wave, and U wave (Ward, 2015, pp.
473-475). Each of these intervals corresponds to specific cardiac events.
For instance, the P wave reflects atrial depolarization, the PR interval
represents conduction through the atrioventricular node, the QRS complex
indicates ventricular depolarization, and the T wave shows ventricular
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repolarization (Tadros, 2017). When all the components occur in their
normal intervals, it is referred to as a sinus rhythm. Abnormalities in a
sinus rhythm, such as irregularities in the timing or structure of these
components—specifically the P wave, PR interval, and QRS
complex—indicate the presence of arrhythmia. Analyzing these
irregularities can help determine the type of arrhythmia and develop
effective treatment strategies.

2.2 Machine Learning Methods

Machine learning has emerged as a powerful tool for various applications,
especially medical diagnostics. For example, a study by Maity and Das
explored the use of machine-learning techniques to diagnose Alzheimer’s
disease (2021, pp. 1393-1398). Using data from the National Alzheimer’s
Coordinating Center, they built a Bayesian model to compute and
determine the probability of an Alzheimer’s diagnosis given the patient’s
family history, cognitive test, and other risk factors. The model achieved
an accuracy of nearly 80% in predicting diagnoses.

Machine learning techniques have also been used to analyze ECG
signals to classify arrhythmias due to their success in pattern recognition
and other medical diagnoses. Traditional methods to develop such
algorithms involved manually extracting features based on domain
knowledge and clinical understanding of ECG waveforms (See Figure 2
for all the steps). These features typically included time-domain metrics
like the RR interval, QRS complex duration, and PR interval (as illustrated
in Figure 1). A study done by Tsipouras et al. focused on leveraging
time-domain features, particularly the RR interval, for arrhythmia
classification using the MIT-BIH Arrhythmia Database (Tsipouras et al.
2005, pp. 237-250) The RR interval represents the time between R peaks
in an ECG waveform and is used to assess heart rhythm regularity. In
addition to RR intervals, they explored other relevant features to
differentiate between different types of arrhythmias. This approach
achieved a high accuracy of 95% in arrhythmic beat classification and
emphasized the significance of extracting certain features using clinical
knowledge to automate arrhythmia detection. However, this method is
limited to detecting episodes specifically related to the RR interval and
can- not detect other arrhythmias like atrial fibrillation. The accuracy also
decreases in larger datasets due to the increased noise and arrhythmias the
method cannot detect.

In contrast to traditional feature extraction methods, a study by Luz
et al. introduced Optimum-Path Forest (OPF), a graph-based classification
technique developed using the MIT-BIH dataset to address issues with
previous models (2013, pp. 3561-3573) . OPF uses a graph approach
where the nodes represent samples and the edges represent the proximity
between these samples in the feature space. This methodology allows OPF
to efficiently capture the underlying structure of the data. Compared to
other well-known classifiers like Support Vector Machines (SVM) and
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Multilayer Perceptron, the OPF classifier had better F1 scores, a metric
that evaluates a model’s ability to correctly classify positive and negative
instances while considering both errors and correct predictions, but lower
accuracy scores ranging from 80% to 90% depending on the features
extracted.

OPF may be more robust and able to detect abnormalities in a
variety of ECG signals, but its complexity makes it difficult to scale.
These scalability challenges cause OPF to be less accurate when dealing
with larger datasets, and it increases the computational cost significantly,
essentially leading to OPF losing its advantage.

Building on advancements in feature extraction and machine
learning classification, a study done by Shimpi et al. introduces another
feature extraction and machine learning method for classifying ECG data
into different types of arrhythmia (2017, pp. 603—607). In this study, the
authors used the UCI Machine Learning Repository dataset, which
included ECG data from 472 patients recorded with 279 attributes each.
They used principal component analysis (PCA) on the dataset to reduce it
to only 150 predictions and preserve around 99% of the variance. They
also use the Bag of Visual Words (BoVW) model to classify. This model is
designed to segment ECG signals and extract key domain-based features
from each segment, like the QRS complex and RR interval. These features
are then clustered using K-means, assigning each feature to one of the
defined clusters. These clusters have values assigned to them, and
histograms can be generated to represent how many of each value there
are in a segment. Machine learning classifiers like SVM and Random
Forests are then used to categorize these histograms. SVM showed the
highest classification accuracy of 91.2%. However, the study’s reliance on
pre-extracted features from the dataset can make it difficult for it to adapt
to different datasets and feature extraction methods. Direct feature
extraction from raw signals can improve the model’s flexibility.

In a more recent study, Kumari et al. used Support Vector
Machines, a supervised machine learning algorithm, to achieve over 95%
accuracy in arrhythmia classification (2021, pp. 1393—-1398). To extract
features, the study incorporated Discrete Wavelet Transform (DWT),
which breaks down the ECG signal into useful components at different
frequencies. DWT works by applying low-pass and high-pass filters to the
signal. The low-pass filters capture the overall shape of the ECG signal,
which can help to see some of the broader trends in the data. On the other
hand, the high-pass filters capture fine details, such as sudden spikes or
noise, providing a detailed view of the signal’s complex features. The
thorough feature extraction makes it easier for the SVM classifier to
differentiate between various arrhythmia types. The model utilized
datasets from MIT-BIH, MIT-BH Sinus, and BIDMC for training and
validation.

The application of machine learning techniques in medical
diagnostics, particularly for arrhythmia classification using ECG signals,
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shows the significant advancements made in integrating Al-based
technology into healthcare. Studies have shown the accuracy of various
models, such as Random Forest, Optimum-Path Forest, and SVMs, in
accurately classifying heart arrhythmias. Feature extraction has
significantly evolved due to advanced algorithms like DWT and PCA, yet
challenges in scalability and adaptability to different datasets highlight the
need for more research in this field.

2.3 Deep Learning Methods

Another notable development in this domain would be the introduction of
deep learning methods. Despite the improved feature extraction and model
selection in machine learning, researchers decided to switch to deep
learning models due to their ability to automatically learn from the data
without explicit programming and find useful features on their own. Deep
learning has also been highly successful in other domains, such as image
processing and Natural Language Processing (NLP). In image processing,
techniques such as Convolutional Neural Networks (CNNs) have been
used to achieve success in image classification and object detection.
Models like AlexNet, VGGnet, and ResNet have effectively recognized
objects and patterns in images with high precision (Jiao et al. 2019, pp.
172 231-172 263). Deep learning has also transformed the field of NLP
by advancing how machines understand human language. Deep Learning
models have excelled in language modeling, parsing, and semantic
processing. Models like BERT and GPT-3 have demonstrated how deep
learning can excel in text generation along with language processing,
leading to significant progress in generative Al. These successes across
diverse fields showcase the capabilities of deep learning and how it is
applied to solve complex problems.

In a study by Ouelli et al., the use of Multilayer Perceptron (MLP)
was employed for arrhythmia classification (2014, pp. 402—406.). The
model they built used finite impulse response for noise reduction in ECG
signals and multivariate autoregressive modeling to extract relevant
features from two-lead ECG signals. FIR filters reduce noise by averaging
the signal over a fixed number of points, keeping important parts of the
ECG. MV AR modeling analyzes how the two ECG leads to change over
time to identify patterns in the heart’s activity. The MLP model was
trained and evaluated using the MIT-BIH database, Creighton University
Ventricular Tachyarrhythmia Database, and MIT-BIH Supraventricular
Arrhythmia Database. This proposed method achieves an overall
classification accuracy of 99.7%.

A study done by Rajkumar et al. introduced a deep-learning approach
using multichannel CNN for ECG classification (2019, pp. 365-369).
Multichannel CNNs can handle more input channels than regular CNN,
making them more suitable for medical imaging or signal processing. The
raw ECG signals from the MIT-BIH arrhythmia database were directly fed
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into the CNN, which processed the features. This approach used a
stochastic gradient descent (SGD) algorithm to minimize the loss function
and had an accuracy of 93.6%.

2.4 Challenges

Classifying arrhythmias from ECG signals poses several challenges that
impact the reliability of machine learning and deep learning models. These
include signal noise and dataset imbalance, both of which can affect model
performance. However, this study employs preprocessing and data
augmentation techniques to mitigate these issues.

ECQG signals often have a low signal-to-noise ratio, which can
obscure important features and reduce classification accuracy. Some
common noise sources include baseline wander, power-line interference,
and muscle artifacts. Respiration, body movements, poor electrode
contact, and skin-electrode impedance contribute to these disturbances.
Baseline wander, which has a frequency spectrum ranging between 0.05
Hz and 1 Hz, can affect the QRS complex amplitude, making it appear
higher or lower than its true value. Power-line interference, caused by
electrical sources operating at frequencies of 50 to 60 Hz, can distort the
P-wave. Muscle artifacts, also known as electromyographic noise, occur
due to electrical activity from muscle contractions and overlap with the
ECG frequency range, making it difficult to isolate the true heart signal.
To mitigate these challenges, a bandpass filter is applied to remove noise
outside the typical heart rate frequency range, improving signal clarity and
model reliability.

Another challenge is dataset imbalance, which is prevalent in the
MIT-BIH Arrhythmia Database. The dataset contains a disproportionate
number of normal heartbeats compared to arrhythmic beats, which can
cause machine learning models to favor normal classes while failing to
detect rarer arrhythmias. To address this issue, the Synthetic Minority
Over- sampling Technique (SMOTE) is applied to generate synthetic
samples for the minority class, improving the model’s ability to recognize
less frequent patterns. While this helps balance class distributions, it does
not introduce additional variability in the dataset.

3 Method

3.1 Dataset

Researchers have explored various machine learning methods to automate
arrhythmia detection, often using the MIT-BIH Arrhythmia Database to
evaluate and train their models. This database provides annotated ECG
signals from 48 patients, recorded over 30-minute durations on two
channels, sampled at a frequency of 360 Hz, and includes the age and
gender of each patient (Sahoo et al. 2020, pp. 185-194) (see Figure 3(a)).
The annotations in the database identify different types of arrhythmias and
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normal beats, allowing researchers to accurately la- bel and classify the
ECG data. By using this dataset, machine learning algorithms can be
trained to classify arrhythmia (Apandi et al. 2018, pp. 1-5). The ECG
recordings analyzed in this study include Lead I and Lead II, which
provide different perspectives of the heart’s electrical activity. Lead I
measures the voltage between the left and right arms, showing electrical
activity moving sideways across the heart. Lead II measures the voltage
between the right arm and left leg, following the heart’s natural electrical
pathway. Because of this, Lead II is often used to monitor heart rhythm
and detect irregularities like arrhythmias (Sampson et al. 2015, pp.
588-594).
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Figure 3. Raw and processed ECG signals for Patient 100, along with
segmented normal and abnormal ECG waveforms. Lead I and Lead 11
capture the heart’s electrical activity from different angles.

3.2 Preprocessing

First, a bandpass filter is applied to the ECG signals with a frequency
range between 0.1 and 30.0 Hz. This filter helps remove noise and
artifacts outside the typical range of heart rate frequencies, improving
signal clarity and reducing the impact of irrelevant frequency components
(Mihov, 2020, pp. 1-4). After filtering, the signals are down sampled to a
lower frequency of 100 Hz, as shown in Figure 3(b) (Kwon, 2018, pp.
198-206), which helps reduce computational complexity and ensures that
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the data remains in a manageable format for further analysis. The dataset
is then segmented into fixed-length windows of 1 second, facilitating more
manageable and consistent data input for machine learning models (see
Figure 3(c) or 3(d)). Each segmented ECG window is then classified as
either normal or abnormal based on the annotations given to each sample.
For example, in Figure 3(d), the annotations marked multiple samples in
that segment to be abnormal due to irregular P-QRS-T wave patterns that
require further clinical evaluation. Normal segments exhibit a consistent
P-QRS-T wave pattern as shown in Figure 3(c).

The overall dataset consists of 5,092 normal segments and 2,876 abnormal
segments, which presents a significant class imbalance. This imbalance
can cause the model to be biased toward predicting the majority class
(normal segments), reducing its ability to accurately detect abnormal
patterns. To address this issue, the Synthetic Minority Over- sampling
Technique (SMOTE) is employed. SMOTE works by generating synthetic
samples for the minority class. It does this by interpolating between a
sample from the minority class and one of its nearest neighbors, creating a
new, synthetic data point that is a linear combination of the two (Glagus et
al. 2013, pp. 1-16). This approach balances the data by mitigating model
bias toward the majority class, enhancing the model’s ability to recognize
less frequent patterns, such as abnormal heartbeats, and improving overall
detection performance.

3.3 Benchmark Models

3.3.1 Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised machine
learning methods developed for binary classification tasks and later
expanded for other uses. SVMs are highly powerful when it comes to
pattern learning due to their capability to handle high- dimensional data
and generalizations. They are used in various applications such as text
detection, image classification, and bioinformatics (Nasiri, 2009, pp.
187-192). SVMs try to find the optimal hyperplane that separates two
classes in feature space with the largest margin, with the margin being the
distance between the hyperplane and the closest data points from each
class. Maximizing the margin helps achieve better generalization
(Mammone, 2009, pp. 283-289). The structure of an SVM, highlighting
the separating hyperplane and margin, is shown in Figure 4(a).
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Figure 4. Comparison of Support Vector Machines (SVM) and Random
Forest Classifier.

3.3.2 Random Forest Classifier

Random forests are a machine learning method that uses multiple decision
trees to improve classification accuracy. Each tree in the forest is trained
on a random subset of the data, and the final prediction is made based on
the majority decision of these individual trees. This approach reduces the
impact of noise and improves robustness compared to single decision trees
or other methods like AdaBoost. Additionally, Random Forests internally
monitor their own performance and error rates, allowing them to assess
how the model’s accuracy changes with the number of features. This
method can be effectively used for both classification and regression tasks,
making it powerful in many data analysis tasks (Breiman, 2001, pp. 5-32).
The structure of a Random Forest, showing the ensemble of decision trees,
is illustrated in Figure 5(b).

3.3.3 Multilayer Perceptron (MLP)

MLP is a simple neural network that consists of multiple layers of nodes.
MLPs typically have an input layer, one or more hidden layers, and an
output layer (as illustrated in Figure 5(a), left). MLPs are designed to
model non-linear relationships in data and are effective in pattern
recognition tasks. They’re trained using backpropagation, a supervised
learning technique that adjusts the weights of the connections to reduce
the error between predicted and actual outputs. Backpropagation allows
MLPs to automatically learn useful features from the data (Ramchoun,
2016).
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Figure 5. Comparison of Multilayer Perceptron (MLP) and Convolutional
Neural Network (CNN).

3.3.4 Convolutional Neural Networks (CNNs)

CNNs are another subclass of neural networks that excel in processing
grid-like data, making them effective for a wide range of applications like
image, speech, and natural language processing. Compared to MLPs,
CNNs have a more complex structure, with convolutional layers, pooling
layers, and specialized layers like batch normalization and dropout layers
(basic structure shown in Figure 5(b), right). Convolutional layers extract
features from the input using various filters. Then, a pooling layer is used
to reduce the spatial dimensions of the features to decrease computational
cost. Batch normalization layers normalize the output, and dropout layers
are used to prevent overfitting by randomly removing neurons during the
training stage. This layered structure enables CNNs to process data

effectively, leading to superior performance in various applications
(Krichen, 2023, p. 151).

3.4 Experiment Setting

After the preprocessing steps, the ECG signals were segmented into
fixed-length segments, with each segment labeled as normal or abnormal
based on annotations. This segmentation then returned a dataset of labeled
signal segments. For model evaluation, 10-fold cross- validation was
employed to ensure robust performance assessment (see Figure 6 for a
visual representation of the process). The dataset was split into an 80:20
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ratio for training and validation. The training set was further resampled
using SMOTE to address class imbalance, ensuring a balanced dataset
before model training. The validation set was used to monitor model
performance and tune hyperparameters. Additionally, no separate holdout
test set was used; instead, performance metrics were averaged across all
folds to provide a reliable estimate of model generalization.

Three machine learning models—SVM, Logistic Regression, and
Random Forest—were trained and evaluated using this cross-validation
approach. Each model was selected for its unique strengths in ECG
classification: SVM handles complex patterns and non-linear
relationships, Logistic Regression serves as a simple and interpretable
baseline, and Random Forest is robust to noise while identifying important
features. This combination ensures a well-balanced evaluation of ECG
classification performance. During each fold, SMOTE was applied to the
training data whenever class imbalance was detected. To standardize
feature values, StandardScaler was fitted on the training data to
standardize feature values. To optimize model performance,
hyperparameter tuning was performed using GridSearchCYV, a systematic
approach that evaluates different hyperparameter combinations through
exhaustive search. The models were trained on the processed training data
and predictions were generated for the test data in each fold. Performance
metrics, including accuracy, precision, recall, and F1-score, were
computed for each fold and then averaged to assess overall model
performance.

Training Data Training Data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 6. An Illustration of a 5-fold Cross-Validation
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Figure 7. Structure of the CNN model used for ECG signal classification.

4 Implementation

A CNN model was developed and optimized through a structured training
process to classify ECG signals effectively. Hyperparameter tuning was
conducted empirically through iterative experimentation, adjusting key
parameters based on validation performance. The number of convolutional
layers, kernel size, dropout rate, and learning rate were tuned to achieve an
optimal balance between model complexity and generalization. Initial
experiments were performed with kernel sizes ranging from 3 to 9, with a
size of 7 selected based on validation accuracy. Similarly, dropout rates
between 0.3 and 0.6 were tested, with 0.5 providing the best trade-off
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between performance and overfitting. Learning rate tuning was performed
using a ReduceLROnPlateau scheduler, which dynamically adjusted the
rate by a factor of 0.5 if validation loss stagnated for five consecutive
epochs. These hyperparameter choices were determined by monitoring
performance on the validation set over multiple runs. The model was
trained using a mini-batch gradient descent approach, where batches of 32
samples were fed into a network to update their weights iteratively. The
Adam optimizer was used with a learning rate of 0.001 and a weight decay
of le-4, providing a balance between convergence and regularization to
prevent overfitting. The learning rate was adjusted using a
ReduceLROnPlateau scheduler, which decreased the learning rate by a
factor of 0.5 if the validation loss did not improve for five consecutive
epochs. To further prevent overfitting, early stopping was implemented,
halting training if validation accuracy did not improve for 15 consecutive
epochs. The model was trained for 100 epochs on a GPU, ensuring
efficient processing.

The training process was implemented using PyTorch and sklearn
libraries. The architecture consisted of 3 convolutional blocks, each
comprising a 1D convolutional layer, batch normalization, and max
pooling. Batch normalization is a technique used to normalize activations
and improve accuracy while speeding up the training process (Bjork,
2018). Max pooling is a method used in convolutional neural networks to
reduce the size of feature maps by picking the highest value in a specific
area. This helps keep important features while making the model more
efficient and less sensitive to small changes in the input data (Murray et al.
2014, pp. 2473-2480) (See Figure 7 For full workflow).

The SMOTE method was used to handle imbalanced datasets.
Additionally, the binary cross-entropy loss function was employed due to
its effectiveness in distinguishing between two classes by measuring the
difference between the predicted probabilities and actual binary labels
(Creswell et al. 2017). Early stopping was implemented with a patience of
15 epochs, meaning the training process would terminate early if no
improvement in validation accuracy were observed over 15 consecutive
epochs. This strategy, combined with the use of SMOTE, helped avoid
overfitting, improved model performance on imbalanced data and reduced
the computational cost by preventing unnecessary training cycles.

During training, the model’s performance was monitored on the
validation set using metrics such as accuracy, precision, recall, Area Under
the Curve (AUC), and F1-score. These metrics provided a thorough
evaluation of the model’s ability to classify both positive and negative
classes, ensuring balanced performance across different clinical conditions
in the ECG data. The final model weights were saved based on the best
validation performance. This model was then evaluated on a separate test
set to confirm its robustness and applicability. The training pipeline was
modular, allowing for easy adjustments to hyperparameters and
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architecture for future research in ECG signal classification using deep
learning.
The performance metrics are defined as follows:

Accuracy = — LRIV
Y = TPYTN+FP+FN
Precision = I

~ TP+FP
TP
Recall = TPiFN

2XPrecisionXRecall
Precision+Recall

F1 — score =

1
AUC = [ TPR(FPR) dFPR
0

Accuracy measures the overall proportion of correctly classified
instances, calculated as the ratio of True Positives (TP) and True
Negatives (TN) to the total instances. Precision is the ratio of True
Positives (TP) to all predicted positives (TP + False Positives, FP),
reflecting the model’s ability to avoid false positives. Recall, or
Sensitivity, is the ratio of True Positives (TP) to all actual positives (TP +
False Negatives, FN), indicating the model’s effectiveness in identifying
positive instances. The F1-score, the harmonic mean of Precision and
Recall, balances these two metrics. AUC (Area Under the Curve)
measures the area under the Receiver Operating Characteristic (ROC)
curve, which plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) at various thresholds, assessing the model’s ability to
differentiate between classes.

5 Results

In this study, several machine learning models and deep learning methods
were employed to evaluate their performance in classifying arrhythmia.
The models assessed include Random Forest, Logistic Regression, SVM,
MLP, and CNN. For a more in-depth evaluation, feature selection
techniques were applied to the machine learning models. The feature used
for the experiment was Fourier Transform (marked as FT on 9).

Figure 8 compares the performance of various machine learning
models across three key metrics: Accuracy, F1 score, and Area Under the
Curve (AUC). The CNN model demonstrates the highest performance
across all three evaluation metrics, achieving an average accuracy of
89.29%, an F1 score of 85.69%, and an AUC of 87.98%. These results
highlight the model’s superior ability to accurately classify the data while
maintaining a strong balance between precision and recall, as reflected by
the high F1 score. The model’s near-perfect AUC further underscores its
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effectiveness in distinguishing between classes, making it a robust choice
for this classification task.

Average Performance Across 10 Folds

09 I
08
07
| I “ I II I II I
MLP CNN

Random Forest  Logistic SVM
Regression

B Accuracy mF1 = AUC

Figure 8. Comparison of Accuracy, F1 Score, and AUC for different machine
learning models and feature selection techniques.

Model Accuracy (%) F1 Score (%) AUC (%)
Random Forest 57.3 £ 1.42 51.6 £+ 1.56 51.8 &£ 147
Logistic Regression 52.0 £ 1.76 51.0 £+ 2.38 51.0 £ 2.12
SVM 59.9 + 0.70 46.6 + 1.02 50.0 + 1.02
Random Forest (FT) 54.7 £ 1.70 35.8 £ 2.82 51.8 £ 1.55
Logistic Regression (FT) 53.6 + 1.26 44.2 + 2.15 52.2 + 1.40
SVM (FT) 59.9 + 0.74 57.1 + 0.32 50.0 + 0.94
MLP 51.7 + 1.91 41.9 + 1.86 50.4 + 1.18
CNN 89.3 + 1.66 85.7 £+ 2.65 87.9 + 2.86

Table 1. Performance Metrics for Different Models

In contrast, both versions of the Random Forest model (with and
without feature selection) exhibit moderate performance. The Random
Forest model without feature selection achieves an average accuracy of
52%, an F1 score of 51%, and an AUC of 51%, indicating that while it
performs marginally better than random guessing, it struggles to balance
precision and recall effectively. The version utilizing Fourier Transform
(Equation shown by 6) feature selection shows slight improvements in
accuracy, with an average of 54.7%, and a modest increase in AUC to
51.8%. However, the F1 score drops significantly to 35.8%, suggesting
that this model struggles to consistently maintain a good balance between
precision and recall.
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The SVM model exhibits similar performance with and without the
application of Fourier Transform (FT) feature selection. Both versions
achieve an identical average accuracy of 59.9% and an AUC of 50%,
indicating that neither model excels at distinguishing between classes.
However, the F1 score, which measures the balance between precision and
recall, shows a noticeable improvement when the Fourier Transform is
applied. The F1 score increases from 46.6% without FT to 57.1% with FT,
suggesting that feature selection using Fourier Transform helps improve
the model’s ability to handle imbalanced data by better balancing precision
and recall. Despite this improvement, the lack of change in AUC indicates
that the model’s overall discriminatory power remains limited.

The performance of the Logistic Regression model shows mixed
results when comparing the version with and without Fourier Transform
(FT) feature selection. Without FT, the model achieves an accuracy of
52%, an F1 score of 51%, and an AUC of 51%, indicating a relatively
balanced performance across these metrics. When FT is applied, there is a
slight increase in accuracy to 53.6% and a small improvement in AUC to
52.2%, suggesting marginally better overall classification ability.
However, the F1 score drops to 44.2%, indicating a decline in the model’s
ability to balance precision and recall. This suggests that while FT
improves the model’s capacity to differentiate between classes (as seen in
the AUC), it does so at the expense of balancing the trade-off between
precision and recall.

The MLP model demonstrates performance similar to most
machine learning models, with an average accuracy of 51.7%, an F1 score
0f 41.9%, and an AUC of 50.4%. These values indicate that the MLP
model is only slightly better than random guessing in terms of accuracy
and AUC, reflecting limited discriminatory power between classes. The
relatively low F1 score further suggests that the model struggles to
maintain a good balance between precision and recall, possibly due to
overfitting or a lack of adaptability to the specific features of the dataset.
Although MLP is typically effective for non-linear problems, the results
here indicate that it may not be the best model for this classification task
without further optimization.

Model Average Accuracy (%) Average F1 Score (%) Average AUC (%)
SVM 61.7 £ 3.0 51.0 £ 19.0 7.7 £3
CNN 895+ 14 86.7 £ 3.6 922+ 14

Table 2. Interpersonal Performance Metrics with Standard Deviation

To test both models, the original dataset was modified to include
only segments from patient 100. The new dataset contained 1,666 total
segments with 585 abnormal segments. As presented in Table 2 The
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interpersonal performance metrics reveal significant differences between
the SVM and CNN models. The SVM achieved an average accuracy of
61.7%, an average F1 score of 51.0%, and an average AUC of 71.7%. In
contrast, the CNN model outperformed the SVM with an impressive
average accuracy of 89.5%, an average F1 score of 86.7%, and an AUC of
92.2%.

6 Discussion

0.1 Analysis of Results

The results highlight the distinct advantages of using CNNs for ECG
classification com- pared to traditional machine learning models like
SVM, Random Forest, and Logistic Regression. CNNs excel in
automatically learning and extracting relevant features from raw ECG
data, enabling them to capture complex patterns and variations crucial for
accurately identifying different types of arrhythmias. CNNs leverage
convolutional layers to automatically extract spatial and temporal features
from ECG waveforms, eliminating the need for manual feature
engineering, which is often required in traditional machine learning
approaches. This capability allows CNNs to learn hierarchical
representations of ECG signals, where early layers detect basic waveform
components such as P-waves and QRS complexes, while deeper layers
identify more complex arrhythmic patterns. Unlike SVMs and Random
Forest classifiers, which rely on predefined features and may struggle with
variations in ECG morphology, CNNs can adapt to diverse waveform
structures, making them particularly effective in detecting subtle and rare
cardiac anomalies (Salehi et al., 2023).

6.2 Limitations

Although these results demonstrate the potential of CNNs in arrhythmia
classification, several challenges remain that must be addressed before
deep learning models can be widely adopted in clinical settings. These
challenges primarily stem from dataset constraints and model limitations,
which impact generalizability and real-world applicability.

One major limitation is the need for large, high-quality datasets to
effectively train deep learning models. Neural networks have many
parameters, and it is recommended that they have at least ten times more
samples than the number of parameters to generalize well. However,
acquiring sufficiently large and diverse datasets in the healthcare domain
remains challenging. Collecting and annotating medical data is
resource-intensive, requiring expert labeling that is often inconsistent.
ECG data is further affected by motion artifacts, poor sensor placement,
and environmental variations, which compromise data quality. These
inconsistencies in labeling and signal integrity introduce additional
challenges for training robust deep learning models.
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The dataset used in this study, the MIT-BIH Arrhythmia Database, has
certain limitations. The database contains a highly imbalanced distribution
of heartbeat classes, with the majority being normal heartbeats. This
imbalance can lead to biased models that perform well on normal beats but
struggle to detect abnormal arrhythmias. Although techniques such as
SMOTE were applied to mitigate this issue, they do not introduce new
physiological variations that occur in real-world ECG signals.

Another limitation is the dataset’s lack of diversity. The MIT-BIH
Arrhythmia Database includes recordings from only 48 patients, which
restricts its ability to generalize to broader populations. The variations in
ECG signals due to age, ethnicity, and health conditions may not be fully
captured by this dataset. Future work should focus on incorporating ECG
data from multiple sources and diverse demographics to improve model
robustness and real-world applicability.

6.3 Future Research

Future research could focus on utilizing larger and more diverse datasets
that include ECG recordings from different demographics, clinical
conditions, and noise levels. Incorporating data from multiple sources
would help improve the model’s robustness across different clinical
environments. Furthermore, while this study used a CNN-based
architecture, future studies could investigate the use of RNNs to generalize
longer segments of ECG recordings and use CNN to extract features from
smaller segments.

Additionally, transfer learning could be explored as a method to
enhance model generalization and performance, particularly in scenarios
where labeled ECG data is limited (Gu et al. 2023). By leveraging
pre-trained deep learning models trained on large biomedical datasets, re-
searchers could fine-tune CNN architectures for ECG classification,
reducing training time while maintaining high accuracy (Salehi et al.,
2023, p.5930).

Another promising direction is the integration of multi-modal deep
learning approaches by combining ECG with other physiological signals,
such as photoplethysmography (PPG) and arterial blood pressure (ABP)
[29]. Multi-modal models have been shown to im- prove classification
accuracy, reduce false alarms, and enhance robustness to signal artifacts,
making them particularly valuable in clinical settings. By leveraging
multiple data sources, future studies could improve model reliability and
provide a more comprehensive understanding of cardiac activity (Kalidas,
2016, p.1253).

Another critical direction for future research is improving the
interpretability of deep learning models through Explainable Al (XAI)
techniques. While CNNs have demonstrated high accuracy in ECG
classification, their black-box nature remains a significant barrier to
clinical adoption. Clinicians require transparency in model
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decision-making to trust Al-driven diagnoses, particularly in high-risk
applications. Future studies could explore post hoc methods like
Grad-CAM and SHAP to highlight key ECG features in model pre-
dictions. Additionally, integrating attention mechanisms or
self-explainable architectures could enhance the interpretability of deep
learning decisions. Enhancing interpretability is essential for increasing
clinician trust, improving model validation, and facilitating regulatory
approval for Al-assisted medical diagnostics (Chaddad et al., 2023, p.634).

7 Conclusion

This research provides a comprehensive approach to using deep learning
techniques for arrhythmia classification, demonstrating the significant
potential of these methods in medical diagnostics. Among the models
tested, the CNN model stood out, achieving the highest performance
across all evaluation metrics, with an average accuracy of 89.29%, an F1
score of 85.69%, and an AUC of 87.98%. These results highlight the
model’s superior ability to accurately classify the data while maintaining a
strong balance between precision and re- call. The study’s methodologies
and findings contribute to the evidence supporting the integration of deep
learning models into clinical practice, which could improve patient out-
comes through earlier detection of cardiac abnormalities. By automating
the extraction of features from ECG data, these models can enhance the
accuracy and speed of arrhythmia detection, ultimately leading to better
patient care. The modular nature of the training process also allows for
adaptability in various clinical settings, making the framework developed
in this study applicable to other medical specialties.

In addition to improving classification performance, deep learning
also holds promise for the discovery of novel biomarkers, as highlighted in
recent research in other fields, such as breast cancer histopathology. By
leveraging deep learning algorithms to analyze complex and
high-dimensional data, it is possible to uncover biological markers that
may not be easily identifiable through traditional methods. In breast
cancer, for example, deep learning has been successfully applied to
identify new prognostic markers by extracting patterns from
histopathology images, as well as linking genomic and proteomic data
with clinical outcomes. This capability to discover new biomarkers can
significantly enhance personalized medicine by identifying specific
indicators of disease progression and treatment response (Mandair et al.,
2023, p.21). This promotes the broader adoption of machine learning in
healthcare, further advancing diagnostic accuracy and patient outcomes,
reducing diagnostic errors, and streamlining treatment decisions.
Ultimately, the application of these models could lead to earlier disease
detection, more precise interventions, and a significant reduction in
healthcare costs by improving efficiency and effectiveness in medical
diagnostics.
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