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Arrhythmias, a form of cardiovascular disease, are a major contributor to 
the high global mortality rate. Early detection of arrhythmias through 
electrocardiogram (ECG) analysis can significantly improve patient 
outcomes. This study investigates the application of var- ious machine 
learning (ML) and deep learning models for the classification of 
arrhythmias using ECG signals from the MIT-BIH Arrhythmia Dataset. 
The models evaluated include Random Forest, Support Vector Machines 
(SVM), Logistic Regression, Multilayer Perceptron (MLP), and 
Convolutional Neural Networks (CNN). Additionally, feature selection 
techniques, such as the Fourier Transform, were applied to enhance the 
performance of the ML models. Among the models tested, the CNN 
achieved the highest accuracy (89.29%), F1 score (85.69%), and AUC 
(87.98%), demonstrating its superior ability in accurately detecting 
arrhythmias. In contrast, traditional ML models, including Random Forest 
and SVM, showed moderate performance with lower accuracy and 
discriminatory power. The study highlights the potential of CNN-based 
architectures for automated ECG analysis and emphasizes the importance 
of integrating explainable AI techniques to increase the transparency and 
clinical adoption of deep learning models. Future research could focus on 
larger, more diverse datasets and the use of Recurrent Neural Networks 
(RNNs) for longer ECG recordings to improve classification performance 
further.  
 
 
Introduction 
Cardiovascular diseases are the leading cause of mortality worldwide, with 
over 16% of all deaths being caused by heart disease (2020). Among 
various heart diseases, arrhythmias pose significant risks. Arrhythmias are 
irregular heartbeats and can often be symptoms of underlying heart 
conditions or other health problems. Untreated arrhythmias cause 
complications like heart failure, stroke, or sudden cardiac arrest (Y. P. Sai 
et al. 2020, pp. 1-6). Detecting arrhythmias early can significantly improve 
patient outcomes and reduce healthcare costs. Given the benefits of early 
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detection, exploring the use of machine learning (ML) models for 
arrhythmia classification becomes vital, as these models can be used to 
automatically and accurately detect arrhythmia. This paper aims to use 
deep learning methods to classify arrhythmia using electrocardiogram 
(ECG) signals from the MIT-BIH Arrhythmia Dataset. The dataset 
includes ECG recordings that cover a variety of arrhythmia, allowing 
machine-learning algorithms to be trained to identify patterns in ECG 
signals that indicate arrhythmia. 

 

 

Figure 1. An ECG waveform highlighting the important intervals, with the 
QRS complex colored shaded in gray. 
 

Significant advancements in machine learning and deep learning 
approaches for arrhythmia detection have already been made. Despite this, 
gaps remain in scalability, model adaptability, and performance 
consistency across diverse datasets. For instance, Tsipouras et al. (2005, 
pp. 237-250) achieved high accuracy using RR intervals for arrhythmia 
classification. The RR interval, which represents the time between 
successive R-peaks in an ECG signal (as shown in Figure 1), is a crucial 
feature in heart rate variability analysis and is often used to detect 
irregularities in cardiac rhythms. While effective in identifying 
arrhythmias related to heart rate fluctuations, this method struggled to 
generalize to other types, such as atrial fibrillation (AFib)—a condition 
characterized by rapid and irregular electrical impulses that disrupt the 
heart’s normal rhythm. Unlike arrhythmias primarily reflected in RR 
interval variations. Similarly, the Optimum-Path Forest (OPF) model 
introduced by Luz et al. (2013, pp. 3561–3573) showed promising F1 
scores, but its complexity and scalability challenges made it less effective 
on larger datasets. In another study, Shimpi et al. (2017, pp. 603–607) 
employed a Bag of Visual Words (BoVW) approach, which relied on 
pre-extracted features. However, this method’s reliance on specific 
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domain-based features limited its adaptability to different datasets and 
ECG signal variations, underscoring the need for more flexible and 
generalizable models. 

This study moves beyond these limitations by leveraging a deep 
learning architecture, specifically Convolutional Neural Networks 
(CNNs), which can automatically extract features from raw ECG signals. 
Unlike methods that rely heavily on pre-defined features like RR intervals 
or specific waveform characteristics, CNNs can learn relevant patterns 
directly from the data, making the model more flexible and capable of 
identifying a wider range of arrhythmias. Additionally, the end-to-end 
nature of the CNN architecture ensures that the model can handle both 
temporal and spatial patterns in the ECG signals, providing a more 
comprehensive analysis compared to traditional machine learning models. 
This allows the model to be scalable and adaptable to larger datasets with 
complex or noisy ECG signals, addressing the issues of generalization and 
performance in real-world settings. 

 

2 Related Works 
2.1 Cardiac Arrhythmias Diagnosis 
Traditionally, doctors diagnose cardiac arrhythmias with a comprehensive 
review of the patient’s clinical history and physical examination, which 
provides crucial information about the presence of any signs and 
symptoms (Levy, 1991). This assessment directs them in selecting the 
appropriate test. A primary tool used for diagnosis is the 
electrocardiogram (ECG).  

 
Figure 2. Flowchart of machine learning techniques used for ECG signal 
classification.  

ECGs record the electrical activity of the heart to identify the type and 
severity of the arrhythmia (Levy, 1991). Interpreting an ECG reading 
involves analyzing various components, including the P wave, PR interval, 
QRS complex, ST segment, T wave, and U wave (Ward, 2015, pp. 
473–475). Each of these intervals corresponds to specific cardiac events. 
For instance, the P wave reflects atrial depolarization, the PR interval 
represents conduction through the atrioventricular node, the QRS complex 
indicates ventricular depolarization, and the T wave shows ventricular 
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repolarization (Tadros, 2017). When all the components occur in their 
normal intervals, it is referred to as a sinus rhythm. Abnormalities in a 
sinus rhythm, such as irregularities in the timing or structure of these 
components—specifically the P wave, PR interval, and QRS 
complex—indicate the presence of arrhythmia. Analyzing these 
irregularities can help determine the type of arrhythmia and develop 
effective treatment strategies.  
 
2.2 Machine Learning Methods  
Machine learning has emerged as a powerful tool for various applications, 
especially medical diagnostics. For example, a study by Maity and Das 
explored the use of machine-learning techniques to diagnose Alzheimer’s 
disease (2021, pp. 1393-1398). Using data from the National Alzheimer’s 
Coordinating Center, they built a Bayesian model to compute and 
determine the probability of an Alzheimer’s diagnosis given the patient’s 
family history, cognitive test, and other risk factors. The model achieved 
an accuracy of nearly 80% in predicting diagnoses.  

Machine learning techniques have also been used to analyze ECG 
signals to classify arrhythmias due to their success in pattern recognition 
and other medical diagnoses. Traditional methods to develop such 
algorithms involved manually extracting features based on domain 
knowledge and clinical understanding of ECG waveforms (See Figure 2 
for all the steps). These features typically included time-domain metrics 
like the RR interval, QRS complex duration, and PR interval (as illustrated 
in Figure 1). A study done by Tsipouras et al. focused on leveraging 
time-domain features, particularly the RR interval, for arrhythmia 
classification using the MIT-BIH Arrhythmia Database (Tsipouras et al. 
2005, pp. 237–250) The RR interval represents the time between R peaks 
in an ECG waveform and is used to assess heart rhythm regularity. In 
addition to RR intervals, they explored other relevant features to 
differentiate between different types of arrhythmias. This approach 
achieved a high accuracy of 95% in arrhythmic beat classification and 
emphasized the significance of extracting certain features using clinical 
knowledge to automate arrhythmia detection. However, this method is 
limited to detecting episodes specifically related to the RR interval and 
can- not detect other arrhythmias like atrial fibrillation. The accuracy also 
decreases in larger datasets due to the increased noise and arrhythmias the 
method cannot detect.  

In contrast to traditional feature extraction methods, a study by Luz 
et al. introduced Optimum-Path Forest (OPF), a graph-based classification 
technique developed using the MIT-BIH dataset to address issues with 
previous models (2013, pp. 3561–3573) . OPF uses a graph approach 
where the nodes represent samples and the edges represent the proximity 
between these samples in the feature space. This methodology allows OPF 
to efficiently capture the underlying structure of the data. Compared to 
other well-known classifiers like Support Vector Machines (SVM) and 
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Multilayer Perceptron, the OPF classifier had better F1 scores, a metric 
that evaluates a model’s ability to correctly classify positive and negative 
instances while considering both errors and correct predictions, but lower 
accuracy scores ranging from 80% to 90% depending on the features 
extracted.  

OPF may be more robust and able to detect abnormalities in a 
variety of ECG signals, but its complexity makes it difficult to scale. 
These scalability challenges cause OPF to be less accurate when dealing 
with larger datasets, and it increases the computational cost significantly, 
essentially leading to OPF losing its advantage.  

Building on advancements in feature extraction and machine 
learning classification, a study done by Shimpi et al. introduces another 
feature extraction and machine learning method for classifying ECG data 
into different types of arrhythmia (2017, pp. 603–607). In this study, the 
authors used the UCI Machine Learning Repository dataset, which 
included ECG data from 472 patients recorded with 279 attributes each. 
They used principal component analysis (PCA) on the dataset to reduce it 
to only 150 predictions and preserve around 99% of the variance. They 
also use the Bag of Visual Words (BoVW) model to classify. This model is 
designed to segment ECG signals and extract key domain-based features 
from each segment, like the QRS complex and RR interval. These features 
are then clustered using K-means, assigning each feature to one of the 
defined clusters. These clusters have values assigned to them, and 
histograms can be generated to represent how many of each value there 
are in a segment. Machine learning classifiers like SVM and Random 
Forests are then used to categorize these histograms. SVM showed the 
highest classification accuracy of 91.2%. However, the study’s reliance on 
pre-extracted features from the dataset can make it difficult for it to adapt 
to different datasets and feature extraction methods. Direct feature 
extraction from raw signals can improve the model’s flexibility.  

In a more recent study, Kumari et al. used Support Vector 
Machines, a supervised machine learning algorithm, to achieve over 95% 
accuracy in arrhythmia classification (2021, pp. 1393–1398). To extract 
features, the study incorporated Discrete Wavelet Transform (DWT), 
which breaks down the ECG signal into useful components at different 
frequencies. DWT works by applying low-pass and high-pass filters to the 
signal. The low-pass filters capture the overall shape of the ECG signal, 
which can help to see some of the broader trends in the data. On the other 
hand, the high-pass filters capture fine details, such as sudden spikes or 
noise, providing a detailed view of the signal’s complex features. The 
thorough feature extraction makes it easier for the SVM classifier to 
differentiate between various arrhythmia types. The model utilized 
datasets from MIT-BIH, MIT-BH Sinus, and BIDMC for training and 
validation.  

The application of machine learning techniques in medical 
diagnostics, particularly for arrhythmia classification using ECG signals, 
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shows the significant advancements made in integrating AI-based 
technology into healthcare. Studies have shown the accuracy of various 
models, such as Random Forest, Optimum-Path Forest, and SVMs, in 
accurately classifying heart arrhythmias. Feature extraction has 
significantly evolved due to advanced algorithms like DWT and PCA, yet 
challenges in scalability and adaptability to different datasets highlight the 
need for more research in this field.  
 
 
2.3 Deep Learning Methods  
Another notable development in this domain would be the introduction of 
deep learning methods. Despite the improved feature extraction and model 
selection in machine learning, researchers decided to switch to deep 
learning models due to their ability to automatically learn from the data 
without explicit programming and find useful features on their own. Deep 
learning has also been highly successful in other domains, such as image 
processing and Natural Language Processing (NLP). In image processing, 
techniques such as Convolutional Neural Networks (CNNs) have been 
used to achieve success in image classification and object detection. 
Models like AlexNet, VGGnet, and ResNet have effectively recognized 
objects and patterns in images with high precision (Jiao et al. 2019, pp. 
172 231–172 263). Deep learning has also transformed the field of NLP 
by advancing how machines understand human language. Deep Learning 
models have excelled in language modeling, parsing, and semantic 
processing. Models like BERT and GPT-3 have demonstrated how deep 
learning can excel in text generation along with language processing, 
leading to significant progress in generative AI. These successes across 
diverse fields showcase the capabilities of deep learning and how it is 
applied to solve complex problems.  

In a study by Ouelli et al., the use of Multilayer Perceptron (MLP) 
was employed for arrhythmia classification (2014, pp. 402–406.). The 
model they built used finite impulse response for noise reduction in ECG 
signals and multivariate autoregressive modeling to extract relevant 
features from two-lead ECG signals. FIR filters reduce noise by averaging 
the signal over a fixed number of points, keeping important parts of the 
ECG. MV AR modeling analyzes how the two ECG leads to change over 
time to identify patterns in the heart’s activity. The MLP model was 
trained and evaluated using the MIT-BIH database, Creighton University 
Ventricular Tachyarrhythmia Database, and MIT-BIH Supraventricular 
Arrhythmia Database. This proposed method achieves an overall 
classification accuracy of 99.7%.​
A study done by Rajkumar et al. introduced a deep-learning approach 
using multichannel CNN for ECG classification (2019, pp. 365–369). 
Multichannel CNNs can handle more input channels than regular CNN, 
making them more suitable for medical imaging or signal processing. The 
raw ECG signals from the MIT-BIH arrhythmia database were directly fed 
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into the CNN, which processed the features. This approach used a 
stochastic gradient descent (SGD) algorithm to minimize the loss function 
and had an accuracy of 93.6%.  
 

2.4 Challenges  
Classifying arrhythmias from ECG signals poses several challenges that 
impact the reliability of machine learning and deep learning models. These 
include signal noise and dataset imbalance, both of which can affect model 
performance. However, this study employs preprocessing and data 
augmentation techniques to mitigate these issues.  

ECG signals often have a low signal-to-noise ratio, which can 
obscure important features and reduce classification accuracy. Some 
common noise sources include baseline wander, power-line interference, 
and muscle artifacts. Respiration, body movements, poor electrode 
contact, and skin-electrode impedance contribute to these disturbances. 
Baseline wander, which has a frequency spectrum ranging between 0.05 
Hz and 1 Hz, can affect the QRS complex amplitude, making it appear 
higher or lower than its true value. Power-line interference, caused by 
electrical sources operating at frequencies of 50 to 60 Hz, can distort the 
P-wave. Muscle artifacts, also known as electromyographic noise, occur 
due to electrical activity from muscle contractions and overlap with the 
ECG frequency range, making it difficult to isolate the true heart signal. 
To mitigate these challenges, a bandpass filter is applied to remove noise 
outside the typical heart rate frequency range, improving signal clarity and 
model reliability.  
Another challenge is dataset imbalance, which is prevalent in the 
MIT-BIH Arrhythmia Database. The dataset contains a disproportionate 
number of normal heartbeats compared to arrhythmic beats, which can 
cause machine learning models to favor normal classes while failing to 
detect rarer arrhythmias. To address this issue, the Synthetic Minority 
Over- sampling Technique (SMOTE) is applied to generate synthetic 
samples for the minority class, improving the model’s ability to recognize 
less frequent patterns. While this helps balance class distributions, it does 
not introduce additional variability in the dataset.  

 

3 Method  
3.1 Dataset  
Researchers have explored various machine learning methods to automate 
arrhythmia detection, often using the MIT-BIH Arrhythmia Database to 
evaluate and train their models. This database provides annotated ECG 
signals from 48 patients, recorded over 30-minute durations on two 
channels, sampled at a frequency of 360 Hz, and includes the age and 
gender of each patient (Sahoo et al. 2020, pp. 185–194) (see Figure 3(a)). 
The annotations in the database identify different types of arrhythmias and 
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normal beats, allowing researchers to accurately la- bel and classify the 
ECG data. By using this dataset, machine learning algorithms can be 
trained to classify arrhythmia (Apandi et al. 2018, pp. 1–5). The ECG 
recordings analyzed in this study include Lead I and Lead II, which 
provide different perspectives of the heart’s electrical activity. Lead I 
measures the voltage between the left and right arms, showing electrical 
activity moving sideways across the heart. Lead II measures the voltage 
between the right arm and left leg, following the heart’s natural electrical 
pathway. Because of this, Lead II is often used to monitor heart rhythm 
and detect irregularities like arrhythmias (Sampson et al. 2015, pp. 
588–594).  

 

    

(a) Processed ECG Signal for Patient 100            (b) Processed ECG Signal for Patient 
100  

    

(a) Segmented Normal ECG Signal                        
(d) Segmented abnormal ECG Signal 

Figure 3. Raw and processed ECG signals for Patient 100, along with 
segmented normal and abnormal ECG waveforms. Lead I and Lead II 
capture the heart’s electrical activity from different angles. 

 
3.2 Preprocessing 
First, a bandpass filter is applied to the ECG signals with a frequency 
range between 0.1 and 30.0 Hz. This filter helps remove noise and 
artifacts outside the typical range of heart rate frequencies, improving 
signal clarity and reducing the impact of irrelevant frequency components 
(Mihov, 2020, pp. 1–4). After filtering, the signals are down sampled to a 
lower frequency of 100 Hz, as shown in Figure 3(b) (Kwon, 2018, pp. 
198–206), which helps reduce computational complexity and ensures that 
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the data remains in a manageable format for further analysis. The dataset 
is then segmented into fixed-length windows of 1 second, facilitating more 
manageable and consistent data input for machine learning models (see 
Figure 3(c) or 3(d)). Each segmented ECG window is then classified as 
either normal or abnormal based on the annotations given to each sample. 
For example, in Figure 3(d), the annotations marked multiple samples in 
that segment to be abnormal due to irregular P-QRS-T wave patterns that 
require further clinical evaluation. Normal segments exhibit a consistent 
P-QRS-T wave pattern as shown in Figure 3(c). 
The overall dataset consists of 5,092 normal segments and 2,876 abnormal 
segments, which presents a significant class imbalance. This imbalance 
can cause the model to be biased toward predicting the majority class 
(normal segments), reducing its ability to accurately detect abnormal 
patterns. To address this issue, the Synthetic Minority Over- sampling 
Technique (SMOTE) is employed. SMOTE works by generating synthetic 
samples for the minority class. It does this by interpolating between a 
sample from the minority class and one of its nearest neighbors, creating a 
new, synthetic data point that is a linear combination of the two (Glagus et 
al. 2013, pp. 1–16). This approach balances the data by mitigating model 
bias toward the majority class, enhancing the model’s ability to recognize 
less frequent patterns, such as abnormal heartbeats, and improving overall 
detection performance. 
 
 
3.3 Benchmark Models 
3.3.1 Support Vector Machines 
Support Vector Machines (SVMs) are a class of supervised machine 
learning methods developed for binary classification tasks and later 
expanded for other uses. SVMs are highly powerful when it comes to 
pattern learning due to their capability to handle high- dimensional data 
and generalizations. They are used in various applications such as text 
detection, image classification, and bioinformatics (Nasiri, 2009, pp. 
187–192).  SVMs try to find the optimal hyperplane that separates two 
classes in feature space with the largest margin, with the margin being the 
distance between the hyperplane and the closest data points from each 
class. Maximizing the margin helps achieve better generalization 
(Mammone, 2009, pp. 283–289). The structure of an SVM, highlighting 
the separating hyperplane and margin, is shown in Figure 4(a). 

 

 

​ 9​ Intersect, Vol 18, No 2 (2025) 
 

 



Murali, Models for Arrhythmia Classification 
 

 

Figure 4. Comparison of Support Vector Machines (SVM) and Random 
Forest Classifier.  

 
3.3.2 Random Forest Classifier 
Random forests are a machine learning method that uses multiple decision 
trees to improve classification accuracy. Each tree in the forest is trained 
on a random subset of the data, and the final prediction is made based on 
the majority decision of these individual trees. This approach reduces the 
impact of noise and improves robustness compared to single decision trees 
or other methods like AdaBoost. Additionally, Random Forests internally 
monitor their own performance and error rates, allowing them to assess 
how the model’s accuracy changes with the number of features. This 
method can be effectively used for both classification and regression tasks, 
making it powerful in many data analysis tasks (Breiman, 2001, pp. 5–32). 
The structure of a Random Forest, showing the ensemble of decision trees, 
is illustrated in Figure 5(b). 

3.3.3 Multilayer Perceptron (MLP) 
MLP is a simple neural network that consists of multiple layers of nodes. 
MLPs typically have an input layer, one or more hidden layers, and an 
output layer (as illustrated in Figure 5(a), left). MLPs are designed to 
model non-linear relationships in data and are effective in pattern 
recognition tasks. They’re trained using backpropagation, a supervised 
learning technique that adjusts the weights of the connections to reduce 
the error between predicted and actual outputs. Backpropagation allows 
MLPs to automatically learn useful features from the data (Ramchoun, 
2016). 
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Figure 5. Comparison of Multilayer Perceptron (MLP) and Convolutional 
Neural Network (CNN). 

 
3.3.4 Convolutional Neural Networks (CNNs) 
CNNs are another subclass of neural networks that excel in processing 
grid-like data, making them effective for a wide range of applications like 
image, speech, and natural language processing. Compared to MLPs, 
CNNs have a more complex structure, with convolutional layers, pooling 
layers, and specialized layers like batch normalization and dropout layers 
(basic structure shown in Figure 5(b), right). Convolutional layers extract 
features from the input using various filters. Then, a pooling layer is used 
to reduce the spatial dimensions of the features to decrease computational 
cost. Batch normalization layers normalize the output, and dropout layers 
are used to prevent overfitting by randomly removing neurons during the 
training stage. This layered structure enables CNNs to process data 
effectively, leading to superior performance in various applications 
(Krichen, 2023, p. 151). 

 
3.4 Experiment Setting 
After the preprocessing steps, the ECG signals were segmented into 
fixed-length segments, with each segment labeled as normal or abnormal 
based on annotations. This segmentation then returned a dataset of labeled 
signal segments. For model evaluation, 10-fold cross- validation was 
employed to ensure robust performance assessment (see Figure 6 for a 
visual representation of the process). The dataset was split into an 80:20 
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ratio for training and validation. The training set was further resampled 
using SMOTE to address class imbalance, ensuring a balanced dataset 
before model training. The validation set was used to monitor model 
performance and tune hyperparameters. Additionally, no separate holdout 
test set was used; instead, performance metrics were averaged across all 
folds to provide a reliable estimate of model generalization. 

Three machine learning models—SVM, Logistic Regression, and 
Random Forest—were trained and evaluated using this cross-validation 
approach. Each model was selected for its unique strengths in ECG 
classification: SVM handles complex patterns and non-linear 
relationships, Logistic Regression serves as a simple and interpretable 
baseline, and Random Forest is robust to noise while identifying important 
features. This combination ensures a well-balanced evaluation of ECG 
classification performance. During each fold, SMOTE was applied to the 
training data whenever class imbalance was detected. To standardize 
feature values, StandardScaler was fitted on the training data to 
standardize feature values. To optimize model performance, 
hyperparameter tuning was performed using GridSearchCV, a systematic 
approach that evaluates different hyperparameter combinations through 
exhaustive search. The models were trained on the processed training data 
and predictions were generated for the test data in each fold. Performance 
metrics, including accuracy, precision, recall, and F1-score, were 
computed for each fold and then averaged to assess overall model 
performance. 
 

 

Figure 6. An Illustration of a 5-fold Cross-Validation 

 
​ 12​ Intersect, Vol 18, No 2 (2025) 

 
 



Murali, Models for Arrhythmia Classification 
 

 

 

 

 

Figure 7. Structure of the CNN model used for ECG signal classification. 

 
 
4 Implementation 
A CNN model was developed and optimized through a structured training 
process to classify ECG signals effectively. Hyperparameter tuning was 
conducted empirically through iterative experimentation, adjusting key 
parameters based on validation performance. The number of convolutional 
layers, kernel size, dropout rate, and learning rate were tuned to achieve an 
optimal balance between model complexity and generalization. Initial 
experiments were performed with kernel sizes ranging from 3 to 9, with a 
size of 7 selected based on validation accuracy. Similarly, dropout rates 
between 0.3 and 0.6 were tested, with 0.5 providing the best trade-off 
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between performance and overfitting. Learning rate tuning was performed 
using a ReduceLROnPlateau scheduler, which dynamically adjusted the 
rate by a factor of 0.5 if validation loss stagnated for five consecutive 
epochs. These hyperparameter choices were determined by monitoring 
performance on the validation set over multiple runs. The model was 
trained using a mini-batch gradient descent approach, where batches of 32 
samples were fed into a network to update their weights iteratively. The 
Adam optimizer was used with a learning rate of 0.001 and a weight decay 
of 1e-4, providing a balance between convergence and regularization to 
prevent overfitting. The learning rate was adjusted using a 
ReduceLROnPlateau scheduler, which decreased the learning rate by a 
factor of 0.5 if the validation loss did not improve for five consecutive 
epochs. To further prevent overfitting, early stopping was implemented, 
halting training if validation accuracy did not improve for 15 consecutive 
epochs. The model was trained for 100 epochs on a GPU, ensuring 
efficient processing. 

The training process was implemented using PyTorch and sklearn 
libraries. The architecture consisted of 3 convolutional blocks, each 
comprising a 1D convolutional layer, batch normalization, and max 
pooling. Batch normalization is a technique used to normalize activations 
and improve accuracy while speeding up the training process (Bjork, 
2018). Max pooling is a method used in convolutional neural networks to 
reduce the size of feature maps by picking the highest value in a specific 
area. This helps keep important features while making the model more 
efficient and less sensitive to small changes in the input data (Murray et al. 
2014, pp. 2473–2480) (See Figure 7 For full workflow). 

The SMOTE method was used to handle imbalanced datasets. 
Additionally, the binary cross-entropy loss function was employed due to 
its effectiveness in distinguishing between two classes by measuring the 
difference between the predicted probabilities and actual binary labels 
(Creswell et al. 2017). Early stopping was implemented with a patience of 
15 epochs, meaning the training process would terminate early if no 
improvement in validation accuracy were observed over 15 consecutive 
epochs. This strategy, combined with the use of SMOTE, helped avoid 
overfitting, improved model performance on imbalanced data and reduced 
the computational cost by preventing unnecessary training cycles. 

During training, the model’s performance was monitored on the 
validation set using metrics such as accuracy, precision, recall, Area Under 
the Curve (AUC), and F1-score. These metrics provided a thorough 
evaluation of the model’s ability to classify both positive and negative 
classes, ensuring balanced performance across different clinical conditions 
in the ECG data. The final model weights were saved based on the best 
validation performance. This model was then evaluated on a separate test 
set to confirm its robustness and applicability. The training pipeline was 
modular, allowing for easy adjustments to hyperparameters and 
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architecture for future research in ECG signal classification using deep 
learning.  

The performance metrics are defined as follows: 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

 𝐴𝑈𝐶 =
0

1

∫ 𝑇𝑃𝑅 𝐹𝑃𝑅( ) 𝑑𝐹𝑃𝑅

Accuracy measures the overall proportion of correctly classified 
instances, calculated as the ratio of True Positives (TP) and True 
Negatives (TN) to the total instances. Precision is the ratio of True 
Positives (TP) to all predicted positives (TP + False Positives, FP), 
reflecting the model’s ability to avoid false positives. Recall, or 
Sensitivity, is the ratio of True Positives (TP) to all actual positives (TP + 
False Negatives, FN), indicating the model’s effectiveness in identifying 
positive instances. The F1-score, the harmonic mean of Precision and 
Recall, balances these two metrics. AUC (Area Under the Curve) 
measures the area under the Receiver Operating Characteristic (ROC) 
curve, which plots the True Positive Rate (TPR) against the False Positive 
Rate (FPR) at various thresholds, assessing the model’s ability to 
differentiate between classes. 
 
 
5 Results 
In this study, several machine learning models and deep learning methods 
were employed to evaluate their performance in classifying arrhythmia. 
The models assessed include Random Forest, Logistic Regression, SVM, 
MLP, and CNN. For a more in-depth evaluation, feature selection 
techniques were applied to the machine learning models. The feature used 
for the experiment was Fourier Transform (marked as FT on 9). 

Figure 8 compares the performance of various machine learning 
models across three key metrics: Accuracy, F1 score, and Area Under the 
Curve (AUC). The CNN model demonstrates the highest performance 
across all three evaluation metrics, achieving an average accuracy of 
89.29%, an F1 score of 85.69%, and an AUC of 87.98%. These results 
highlight the model’s superior ability to accurately classify the data while 
maintaining a strong balance between precision and recall, as reflected by 
the high F1 score. The model’s near-perfect AUC further underscores its 

​ 15​ Intersect, Vol 18, No 2 (2025) 
 

 



Murali, Models for Arrhythmia Classification 
 

effectiveness in distinguishing between classes, making it a robust choice 
for this classification task. 

 

Figure 8. Comparison of Accuracy, F1 Score, and AUC for different machine 
learning models and feature selection techniques. 

 

 

Table 1. Performance Metrics for Different Models 

In contrast, both versions of the Random Forest model (with and 
without feature selection) exhibit moderate performance. The Random 
Forest model without feature selection achieves an average accuracy of 
52%, an F1 score of 51%, and an AUC of 51%, indicating that while it 
performs marginally better than random guessing, it struggles to balance 
precision and recall effectively. The version utilizing Fourier Transform 
(Equation shown by 6) feature selection shows slight improvements in 
accuracy, with an average of 54.7%, and a modest increase in AUC to 
51.8%. However, the F1 score drops significantly to 35.8%, suggesting 
that this model struggles to consistently maintain a good balance between 
precision and recall. 
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The SVM model exhibits similar performance with and without the 
application of Fourier Transform (FT) feature selection. Both versions 
achieve an identical average accuracy of 59.9% and an AUC of 50%, 
indicating that neither model excels at distinguishing between classes. 
However, the F1 score, which measures the balance between precision and 
recall, shows a noticeable improvement when the Fourier Transform is 
applied. The F1 score increases from 46.6% without FT to 57.1% with FT, 
suggesting that feature selection using Fourier Transform helps improve 
the model’s ability to handle imbalanced data by better balancing precision 
and recall. Despite this improvement, the lack of change in AUC indicates 
that the model’s overall discriminatory power remains limited. 

The performance of the Logistic Regression model shows mixed 
results when comparing the version with and without Fourier Transform 
(FT) feature selection. Without FT, the model achieves an accuracy of 
52%, an F1 score of 51%, and an AUC of 51%, indicating a relatively 
balanced performance across these metrics. When FT is applied, there is a 
slight increase in accuracy to 53.6% and a small improvement in AUC to 
52.2%, suggesting marginally better overall classification ability. 
However, the F1 score drops to 44.2%, indicating a decline in the model’s 
ability to balance precision and recall. This suggests that while FT 
improves the model’s capacity to differentiate between classes (as seen in 
the AUC), it does so at the expense of balancing the trade-off between 
precision and recall. 

The MLP model demonstrates performance similar to most 
machine learning models, with an average accuracy of 51.7%, an F1 score 
of 41.9%, and an AUC of 50.4%. These values indicate that the MLP 
model is only slightly better than random guessing in terms of accuracy 
and AUC, reflecting limited discriminatory power between classes. The 
relatively low F1 score further suggests that the model struggles to 
maintain a good balance between precision and recall, possibly due to 
overfitting or a lack of adaptability to the specific features of the dataset. 
Although MLP is typically effective for non-linear problems, the results 
here indicate that it may not be the best model for this classification task 
without further optimization.

 

Table 2. Interpersonal Performance Metrics with Standard Deviation 

To test both models, the original dataset was modified to include 
only segments from patient 100. The new dataset contained 1,666 total 
segments with 585 abnormal segments. As presented in Table 2 The 
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interpersonal performance metrics reveal significant differences between 
the SVM and CNN models. The SVM achieved an average accuracy of 
61.7%, an average F1 score of 51.0%, and an average AUC of 71.7%. In 
contrast, the CNN model outperformed the SVM with an impressive 
average accuracy of 89.5%, an average F1 score of 86.7%, and an AUC of 
92.2%. 

 
 

6 Discussion 
6.1 Analysis of Results 
The results highlight the distinct advantages of using CNNs for ECG 
classification com- pared to traditional machine learning models like 
SVM, Random Forest, and Logistic Regression. CNNs excel in 
automatically learning and extracting relevant features from raw ECG 
data, enabling them to capture complex patterns and variations crucial for 
accurately identifying different types of arrhythmias. CNNs leverage 
convolutional layers to automatically extract spatial and temporal features 
from ECG waveforms, eliminating the need for manual feature 
engineering, which is often required in traditional machine learning 
approaches. This capability allows CNNs to learn hierarchical 
representations of ECG signals, where early layers detect basic waveform 
components such as P-waves and QRS complexes, while deeper layers 
identify more complex arrhythmic patterns. Unlike SVMs and Random 
Forest classifiers, which rely on predefined features and may struggle with 
variations in ECG morphology, CNNs can adapt to diverse waveform 
structures, making them particularly effective in detecting subtle and rare 
cardiac anomalies (Salehi et al., 2023). 

 
6.2 Limitations 
Although these results demonstrate the potential of CNNs in arrhythmia 
classification, several challenges remain that must be addressed before 
deep learning models can be widely adopted in clinical settings. These 
challenges primarily stem from dataset constraints and model limitations, 
which impact generalizability and real-world applicability. 

One major limitation is the need for large, high-quality datasets to 
effectively train deep learning models. Neural networks have many 
parameters, and it is recommended that they have at least ten times more 
samples than the number of parameters to generalize well. However, 
acquiring sufficiently large and diverse datasets in the healthcare domain 
remains challenging. Collecting and annotating medical data is 
resource-intensive, requiring expert labeling that is often inconsistent. 
ECG data is further affected by motion artifacts, poor sensor placement, 
and environmental variations, which compromise data quality. These 
inconsistencies in labeling and signal integrity introduce additional 
challenges for training robust deep learning models. 
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The dataset used in this study, the MIT-BIH Arrhythmia Database, has 
certain limitations. The database contains a highly imbalanced distribution 
of heartbeat classes, with the majority being normal heartbeats. This 
imbalance can lead to biased models that perform well on normal beats but 
struggle to detect abnormal arrhythmias. Although techniques such as 
SMOTE were applied to mitigate this issue, they do not introduce new 
physiological variations that occur in real-world ECG signals. 

Another limitation is the dataset’s lack of diversity. The MIT-BIH 
Arrhythmia Database includes recordings from only 48 patients, which 
restricts its ability to generalize to broader populations. The variations in 
ECG signals due to age, ethnicity, and health conditions may not be fully 
captured by this dataset. Future work should focus on incorporating ECG 
data from multiple sources and diverse demographics to improve model 
robustness and real-world applicability. 

 
 

6.3 Future Research 
Future research could focus on utilizing larger and more diverse datasets 
that include ECG recordings from different demographics, clinical 
conditions, and noise levels. Incorporating data from multiple sources 
would help improve the model’s robustness across different clinical 
environments. Furthermore, while this study used a CNN-based 
architecture, future studies could investigate the use of RNNs to generalize 
longer segments of ECG recordings and use CNN to extract features from 
smaller segments. 

Additionally, transfer learning could be explored as a method to 
enhance model generalization and performance, particularly in scenarios 
where labeled ECG data is limited (Gu et al. 2023). By leveraging 
pre-trained deep learning models trained on large biomedical datasets, re- 
searchers could fine-tune CNN architectures for ECG classification, 
reducing training time while maintaining high accuracy (Salehi et al., 
2023, p.5930). 

Another promising direction is the integration of multi-modal deep 
learning approaches by combining ECG with other physiological signals, 
such as photoplethysmography (PPG) and arterial blood pressure (ABP) 
[29]. Multi-modal models have been shown to im- prove classification 
accuracy, reduce false alarms, and enhance robustness to signal artifacts, 
making them particularly valuable in clinical settings. By leveraging 
multiple data sources, future studies could improve model reliability and 
provide a more comprehensive understanding of cardiac activity (Kalidas, 
2016, p.1253). 
Another critical direction for future research is improving the 
interpretability of deep learning models through Explainable AI (XAI) 
techniques. While CNNs have demonstrated high accuracy in ECG 
classification, their black-box nature remains a significant barrier to 
clinical adoption. Clinicians require transparency in model 
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decision-making to trust AI-driven diagnoses, particularly in high-risk 
applications. Future studies could explore post hoc methods like 
Grad-CAM and SHAP to highlight key ECG features in model pre- 
dictions. Additionally, integrating attention mechanisms or 
self-explainable architectures could enhance the interpretability of deep 
learning decisions. Enhancing interpretability is essential for increasing 
clinician trust, improving model validation, and facilitating regulatory 
approval for AI-assisted medical diagnostics (Chaddad et al., 2023, p.634). 

 

7 Conclusion 
This research provides a comprehensive approach to using deep learning 
techniques for arrhythmia classification, demonstrating the significant 
potential of these methods in medical diagnostics. Among the models 
tested, the CNN model stood out, achieving the highest performance 
across all evaluation metrics, with an average accuracy of 89.29%, an F1 
score of 85.69%, and an AUC of 87.98%. These results highlight the 
model’s superior ability to accurately classify the data while maintaining a 
strong balance between precision and re- call. The study’s methodologies 
and findings contribute to the evidence supporting the integration of deep 
learning models into clinical practice, which could improve patient out- 
comes through earlier detection of cardiac abnormalities. By automating 
the extraction of features from ECG data, these models can enhance the 
accuracy and speed of arrhythmia detection, ultimately leading to better 
patient care. The modular nature of the training process also allows for 
adaptability in various clinical settings, making the framework developed 
in this study applicable to other medical specialties. 

In addition to improving classification performance, deep learning 
also holds promise for the discovery of novel biomarkers, as highlighted in 
recent research in other fields, such as breast cancer histopathology. By 
leveraging deep learning algorithms to analyze complex and 
high-dimensional data, it is possible to uncover biological markers that 
may not be easily identifiable through traditional methods. In breast 
cancer, for example, deep learning has been successfully applied to 
identify new prognostic markers by extracting patterns from 
histopathology images, as well as linking genomic and proteomic data 
with clinical outcomes. This capability to discover new biomarkers can 
significantly enhance personalized medicine by identifying specific 
indicators of disease progression and treatment response (Mandair et al., 
2023, p.21). This promotes the broader adoption of machine learning in 
healthcare, further advancing diagnostic accuracy and patient outcomes, 
reducing diagnostic errors, and streamlining treatment decisions. 
Ultimately, the application of these models could lead to earlier disease 
detection, more precise interventions, and a significant reduction in 
healthcare costs by improving efficiency and effectiveness in medical 
diagnostics. 
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