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Abstract
Amyotrophic Lateral Sclerosis (ALS) is a relentless and devastating
neurodegenerative disease characterized by the progressive degeneration
of motor neurons in the brain and spinal cord. This study aims to enhance
the tracking of ALS progression by identifying key predictors of decline
using the ALS Functional Rating Scale (ALSFRS) score. Utilizing the
comprehensive Pooled Resource Open-Access ALS Clinical Trials
(PRO-ACT) Database, a diverse array of machine learning algorithms is
employed, including logistic and LASSO regressions, support vector
machines, random forests, gradient boosted trees, explainable boosted
machines, extreme gradient boosted trees, and neural network modeling.
After data preprocessing, the study analyzed a clean cohort of
approximately 6,000 patients and over 400 features, representing the most
extensive dataset used in ALS research within the Pro-ACT framework to
date. This dataset includes detailed demographics, medication usage, and
blood marker information. The Explainable Boosting Machine (EBM)
demonstrated superior performance, achieving an AUC of 0.81, accuracy
of 0.74, recall of 0.73, and precision of 0.64, with significant (80%)
overlap in key features identified across models. A total of 24 biomarkers
were identified as playing a role in ALS progression, with Bicarbonate,
Creatine Kinase, Creatinine, Chloride, Calcium, and Phosphorus standing
out as the most significant. Both the feature importance scores from the
Explainable Boosting Machine (EBM) and the Mann-Whitney Test (p <
0.001) confirmed the statistical significance of these key biomarkers,
validating their critical roles in the analysis of ALS progression.
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1. Introduction
1.1 Background
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative
disorder characterized by the gradual loss of motor neurons in the brain
and spinal cord, leading to muscle atrophy, weakness, and eventually
paralysis. Despite its relatively low prevalence compared to other
neurological disorders, ALS has a significant impact, with a median
survival time of 2 to 5 years post-diagnosis (Ceccanti et al., 2020).
Currently, approximately 30,000 people in the United States and 230,000
globally suffer from ALS, with numbers expected to increase to
approximately 377,000 by 2040 (Arthur et al., 2016).

Current diagnostic methods for ALS rely primarily on clinical
neurological evaluation, electromyography, nerve conduction studies,
neuroimaging, and cerebrospinal fluid analysis. However, these
approaches often fail to provide a definitive diagnosis in the early stages
of the disease, leading to delays in treatment initiation (Brotman et al.,
2024).

ALS treatment options are limited and primarily focus on managing
symptoms and improving quality of life. Medications such as Riluzole and
Edaravone have shown some efficacy in slowing disease progression to
some extent (Mandrioli et al., 2018; Huang et al., 2024).

Therefore, identification of relevant biomarkers has critical
importance in ALS research, offering invaluable insights that may pave
the way for the development of innovative biomarker-based approaches to
enhance ALS diagnosis, prognosis, and treatment efficacy in the clinical
setting. The development of minimally invasive, cost-effective biomarker
assays is imperative to facilitate their widespread adoption in clinical
practice.

1.2 Pathophysiology of ALS
A striking contrast exists between the neuro-muscular connections of a
healthy individual and those affected by Amyotrophic Lateral Sclerosis
(ALS). In a healthy system, robust motor neurons bridge the brain and
spinal cord to muscles, ensuring the efficient transmission of signals that
govern voluntary movements. This intricate communication enables
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coordination and dexterity. In contrast, ALS leads to the gradual
degeneration and atrophy of these motor neurons, which become withered
and fragmented, disrupting their ability to transmit signals to muscle
fibers. As a result, muscles do not receive the necessary stimuli to
maintain function and mass, leading to atrophy. This degeneration
primarily impacts voluntary muscles, leading to difficulties in speaking,
swallowing, and ultimately breathing as the disease advances.

The central characteristic of ALS pathology lies in the damage to both
upper and lower motor neurons, which are essential for movement. Upper
motor neurons, which originate in the brain and travel down to the spinal
cord, initiate commands for voluntary movements, while lower motor
neurons, which connect the spinal cord to muscles, execute these
commands by causing muscle contraction. In ALS, the degeneration of
upper motor neurons disrupts movement signals, leading to stiffness
(spasticity) and overly brisk reflexes (hyperreflexia). Simultaneously, the
deterioration of lower motor neurons weakens muscles, causing shrinkage
(atrophy) and involuntary twitches (fasciculations). As more motor
neurons lose function and die, muscles progressively weaken, ultimately
resulting in paralysis and the loss of voluntary movement. Eventually, the
inability to control the muscles needed for breathing leads to respiratory
failure, which is the primary cause of death in most ALS patients.

1.3 Current Diagnostic Methods and Treatment Options
Current diagnostic methods for ALS primarily rely on clinical
neurological evaluations and electrophysiological testing, such as
electromyography, nerve conduction studies, neuroimaging, and
cerebrospinal fluid analysis. However, these approaches often struggle to
provide a definitive diagnosis in the early stages of the disease, leading to
delays in treatment initiation (Iłżecka, 2003). The heterogeneity of ALS
phenotypes further complicates diagnosis and prognosis, highlighting the
pressing need for more sensitive and specific biomarkers.

In terms of treatment, options for ALS are limited and mainly focus
on symptom management and supportive care. While medications like
Riluzole and Edaravone have been approved for ALS treatment, their
efficacy is modest, and they do not offer a cure. Thakore et al. (2022b)
reported that Riluzole improved median survival by 2 months in their
study. In a broader analysis, Andrews et al. (2020) reviewed 15 studies
and discussed that Riluzole extended median survival by 9 to 16 months in
studies with large patient samples, whereas smaller studies showed
insignificant results. Similarly, studies by Park et al. (2019), Abe et al.
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(2017), and Cho and Shukla (2020) demonstrated that Edaravone can slow
ALS progression, although its overall impact remains limited.

1.4 Past Research
In understanding ALS, researchers have highlighted the importance of
blood biomarkers as crucial for early detection, monitoring progression,
and predicting outcomes. While genomic markers and neuroimaging are
valuable, this review specifically focuses on seminal studies of blood
biomarkers, aligning with the scope of this research.

Yang et al. (2023) identified eosinophils as potential biomarkers in
ALS, demonstrating an inverse correlation with disease progression. Liu
et al. (2013) highlighted eosinophil-derived neurotoxin as a potential ALS
biomarker, finding significantly higher levels in patients compared to
controls. Ong et al. (2017) expanded the biomarker studies by employing
predictive models to evaluate functional decline and survival, associating
clinical features like weight, alkaline phosphatase, albumin, and creatine
kinase levels with disease progression.

The role of creatinine and creatine kinase became the focus of
subsequent investigations. Chiò et al. (2014) shed light on the prognostic
implications of these biomarkers, particularly creatinine and albumin.
Furthermore, Ceccanti et al. (2020) identified a correlation between higher
creatine kinase levels and a slower disease progression in a small patient
cohort. However, Gao et al. (2022) later discovered that although elevated
creatine kinase levels were associated with lower motor neuron
denervation, they did not independently predict survival during
symptomatic phases.

Hertel et al. (2022) demonstrated a correlation between albumin
levels and ALSFRS scores, while Sun et al. (2020) and Gentile et al.
(2023) observed that lower albumin levels were associated with faster
disease progression.

Turabieh et al. (2023) analyzed the ALS Functional Rating
Scale-Revised (FRS-R) slope, highlighting its utility as a robust
benchmark for tracking disease progression in ALS. Their models also
demonstrated that factors such as days since disease onset and
subcomponents of the ALSFRS were predictive of changes in ALSFRS
slope.

This overview underscores the complexity of ALS research and the
ongoing need to refine methodologies to ensure the reliability and
applicability of findings.
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1.5 Research Goals
The primary objective of this research is to identify biomarkers predicting
progression speed of sporadic ALS using machine learning models. This
study evaluates biomarkers' efficacy for predictive and diagnostic
purposes to improve early intervention strategies.

The data analyzed for the research is compiled from Pooled Resource
Open-Access ALS Clinical Trials (PRO-ACT) Database. Founded in
2012, PRO-ACT offers the largest anonymized patient data set for ALS
research, containing approximately 11,700 patient records and 10 million
data points from 29 clinical trials. The PRO-ACT database includes 16
longitudinal data tables with a total of 213 columns, providing a
comprehensive foundation for subsequent analyses. The data tables
available in the PRO-ACT database include Adverse Events, Forced Vital
Capacity (FVC), Slow Vital Capacity (SVC), Laboratory Tests (Labs),
ALS History, Vital Signs, Death Data, Demographics, Riluzole, ALS
Functional Rating Scale (ALSFRS), El Escorial Criteria, Family History,
Hand Grip Strength, Muscle Strength, and Concomitant Medications.

After merging datasets across PRO-ACT database, and applying
novel data preparation techniques, the dataset with about 6,000 patients
was ready for analysis, one of the most comprehensive ALS datasets in
literature.

Due to its comprehensive nature and availability, the ALS Functional
Rating Scale (ALSFRS) was chosen as the optimal dependent variable to
represent the progression of ALS disease in the machine learning models.
The ALSFRS is a tool used by healthcare providers to monitor the
progression of disability in ALS patients over time. This scale assesses
various functional abilities of the patient, including speech, salivation,
swallowing, handwriting, utensil handling, dressing, hygiene, bed
mobility, walking, stair climbing, and breathing. It comprises 12 questions,
each rated from 0 to 4, where higher scores denote better function. The
maximum possible score is 48, indicating full function.

A nominal decrease of 10 points in the ALSFRS score is selected as
the threshold for defining 'Fast Progression,' as it reflects a substantial
deterioration in a patient's health and functional abilities. An important
consideration in defining this decline threshold is also to ensure a balanced
representation of both slow and fast progression patients in the dataset,
enabling more accurate modeling and analysis.

2. Methods
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Figure 1 provides a detailed overview of the research methodology,
tracing the systematic steps from initial data collection to complex model
optimization. Starting with raw data collection from the PRO-ACT
database, it outlines the stages of data preparation, such as data cleaning
and defining outcomes, followed by exploratory data analysis. The figure
further illustrates the development of a propensity model through data
segmentation, feature selection, application of various algorithms, and
model selection.

FIGURE 1. A summary of the research procedure broken down into steps.

2.1 Data Pre-Processing
As depicted in Figure 2, the initial data source comprised 16 longitudinal
data tables from 11,675 unique patients. Each table was transformed to a
wide data format to streamline analysis and modeling tasks. Feature
engineering was conducted to create new features, such as tracking blood
markers over time, resulting in 428 features.
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FIGURE 2. Data funnel reduction steps, explaining how the data is prepared
for the analysis.

Addressing missing data and outliers was essential to ensure the
dataset's integrity. Features with missing values exceeding 30% were
systematically pruned to mitigate potential biases and inaccuracies in the
analysis. To address missing data within the dataset, an imputation
strategy was employed, utilizing methods such as frequency, mode, or
median imputation. These techniques were chosen for their effectiveness
in preserving data completeness while minimizing the impact of missing
values on subsequent analyses. Outliers were managed using
percentile-based caps (97th percentile) and floors (3rd percentile) to
reduce skewed results and enhance robustness.

2.2 Data Analysis
The data analysis process followed four key steps: univariate analysis,
defining the dependent (outcome) variable, bivariate analysis, and
dimensionality reduction.

2.2.1 Univariate Analysis
Histograms and boxplots are utilized to visualize the distribution of each
independent feature. Additionally, descriptive statistics are computed for
all independent features, such as mean, median, standard deviation, range,
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minimum, maximum, skewness, and quartiles. These statistics offer a
comprehensive overview of the data's central tendency, spread, and
variability, facilitating the identification of outliers or anomalies.
Moreover, the analysis includes the assessment of the nulls, and missing
values for each feature, aiding in data cleaning efforts. Descriptive
analytics for a sample of features is presented in Table 1.

Descriptive Statistics

Feature Coun
t Mean

Standard
Deviatio

n
Min

25th
Percentil

e

50th
Percentil

e

75th
Percentil

e
Max Skewness

Abs
Eosinophil 3,958 0.48 0.92 0.00 0.10 0.16 0.27 10.08 3.53

Alkaline
Phosphatase 4,327 76.0 22.3 22.3 61.2 73 86.8 346.1 1.88

ALSFRS
(starting) 5,864 31 4.78 20 28 32 35 41 -0.35

Bicarbonate 4,725 26.2 2.83 17.20 24.25 26.00 28.00 43.00 0.37
Calcium 4,738 2.36 0.10 1.81 2.29 2.36 2.43 3.57 0.39
Creatine
Kinase 4,075 296 277 12 119 216 374 4,368 2.53

Eosinophils 3,873 2.33 1.46 0.00 1.37 2.00 2.92 24.00 2.73
Glucose 5,214 5.61 1.61 0.78 4.77 5.27 5.98 28.80 3.96
Hematocrit 5,208 38.8 13.39 0.35 39.77 42.75 45.29 57.00 -2.33
Hematocrit
Change 5,208 0.04 2.64 -32.33 -1.30 0.00 1.40 25.20 -0.10

Lymphocyte 4,479 26.2 6.58 7.35 21.64 25.70 30.18 67.00 0.44
Days since
onset 5,749 640 401 -4745 -814 -544 -356 -16 0.14

Phosphorus 4,312 1.2 0.13 0.74 1.12 1.20 1.28 1.72 -0.15
Platelets 4,961 242 75 0 205 243 284 622 -0.60
Potassium
% Change 5,468 0.44 9.01 -91.33 -4.88 0.00 5.13 70.45 0.02

Red Blood
Cells 4,674 2.2E+07 3.2E+08 2.1E-0

3 4.4E+03 4.7E+03 5.0E+03 5.7E+09 9.59

White
Blood Cell
Change

4,674 0.5 2.48 -12.47 -0.70 0.10 1.17 37.00 0.91

TABLE 1. Descriptive analytics for univariate analysis for a sample of features.

2.2.2 Model Outcome Definition
Outcome (label, dependent variable) for the machine learning model needs
to be a benchmark for the progression of ALS diseases. Based on the
Pro-ACT data, several metrics can be utilized to evaluate this progression,
including ALSFRS, ALSFRS-R, FVC, SVC, BMI, and Muscle Strength.
Selecting the appropriate outcome is crucial for accurately modeling the
disease trajectory and ensuring the model's predictive performance.

Using univariate analysis, ALSFRS is identified as the optimal
outcome variable due to its comprehensive nature in assessing overall
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health and its widespread availability in the dataset. This makes it a robust
choice for evaluating ALS progression in the model. Cohorting analysis,
shown in Figure 3, which examines the starting FRS score and its decline
over 6, 9, and 12 months, reveals heterogeneous data, suggesting varying
disease progression rates among patients. Two methodologies for defining
the outcome, nominal point decrease vs. percent of score decrease, yield
similar results in terms of machine learning model performance and
bivariate analysis. Ultimately, a nominal decrease of 10 points in ALSFRS
score is chosen as it signifies a significant change in the patient's health
and capabilities. An important consideration in defining this decline
threshold is to maintain a balanced representation of the classes within the
dataset. By employing this specific criterion, approximately 40% of the
sample population can be categorized as experiencing "Fast Progression,"
as illustrated in Figure 4.

FIGURE 3. Cohort analysis for label outcome definitions.
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FIGURE 4. Fast vs. Slow Progression sample based on 10-point nominal
decline.

2.2.3 Bivariate Analysis
Bivariate analysis is conducted to explore the relationship between the
dependent variable and independent features within the dataset. Firstly,
data plots such as scatter plots and pair plots were utilized to visually
examine the distribution of independent features against the dependent
variable. Additionally, cross-tabulation is employed to provide a tabular
view of the data pairs, facilitating a comprehensive understanding of the
relationship between the dependent feature and independent features.

Furthermore, statistics such as Pearson Correlation, Spearman
Correlation, Kendall correlation for continuous features, whereas
chi-square and Cramer’s V were computed for categorical features. These
statistical measures help quantify the strength and significance of the
relationships observed. Table 2 and Table 3 display the correlations
statistics for a sample of categorical and continuous features.

Correlation Statistics
Feature Pearson Spearman Kendall
Absolute Basophil Average 6m -0.038 -0.025 -0.021
Alkaline Phosphatase Level 0.042 0.062 0.050
ALSFRS Score (starting) -0.204 -0.210 -0.177
Bicarbonate Level 0.137 0.129 0.105
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Blood Urea Nitrogen % Change 0.005 0.000 0.000
Chloride Level -0.131 -0.114 -0.094
Creatine Kinase Level -0.109 -0.118 -0.097
Creatine Kinase % Change -0.006 -0.058 -0.048
Creatinine Average 6m -0.093 -0.124 -0.101
Days since onset 0.263 0.284 0.232
Eosinophils Level -0.041 -0.039 -0.032
Glucose Level -0.002 0.034 0.028
Hematocrit Change 0.023 0.033 0.027
Hematocrit Level 0.037 0.037 0.030
Lymphocytes Level -0.088 -0.085 -0.069
Phosphorus Level 0.175 0.177 0.145
Phosphorus % Change 0.027 0.030 0.025
Platelets Level 0.051 0.049 0.040
Potassium Level 0.008 0.011 0.009
Potassium % Change -0.008 -0.002 -0.002
Weight -0.094 -0.099 -0.081
White Blood Cell Change -0.011 0.004 0.003
White Blood Cell Level 0.040 0.048 0.040
TABLE 2. A sample of bivariate correlation analysis between continuous
features and ALSFRS score decline.

Correlation Statistics

Feature
Chi-Square Test

Cramer's V
Statistics p-value

Bulbar onset 92.40 7.10E-22 0.126
Gastrointestinal issues 77.48 1.34E-18 0.115
Medication - Amitripyline 40.11 2.40E-10 0.083
Medication - Lorazepam 20.38 6.34E-06 0.059
Medication - Tylenol 9.67 1.88E-03 0.041
Renal Issues 8.36 3.84E-03 0.038
Medication - Baclofen 8.05 4.54E-03 0.037
Race Hispanic Latino 4.85 2.77E-02 0.029
Medication - Betacarotene 3.98 4.61E-02 0.026
Medication – Riluzole 5.75 5.64E-02 0.031
Blood Pressure 15.86 3.22E-03 0.052
Diagnosis Bucket 128.96 7.62E-23 0.148
Symptom Onset 428.52 1.82E-88 0.270
Pulse 54.98 6.93E-12 0.097
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TABLE 3. A sample of bivariate correlation analysis between categorical
features and ALSFRS score decline.

Lastly, correlations between independent features are computed. This
step identifies highly correlated features to avoid collinearity, which can
negatively impact the performance and interpretability of certain models,
such as logistic regression and LASSO regression. Correlation heatmap
displaying feature correlations is shown in Figure 5.

FIGURE 5. Pairwise correlation heatmap for a sample of features studied for
the analysis.

2.2.4 Dimensionality Reduction
Dimensionality reduction is essential for enhancing the efficiency of
machine learning models by simplifying complex datasets. Principal
Component Analysis (PCA) is conducted to reduce dimensionality while
retaining essential information. In this study, absolute PCA loadings are
used and the top features within each principal component are picked to
represent the most diverse set of features. This approach manages model
complexity and minimizes collinearity, addressing common issues in
model building related to high correlation among predictors. At the
conclusion of the data analysis step, the feature set is streamlined to
approximately 100 features.

2.3 Machine Learning Algorithms for propensity modeling
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In this study, the observation period spans 6 months, while the projection
period extends to 9 months, allowing for a comprehensive analysis of
disease progression over time. The prediction gap of 3 months helps avoid
overlearning from the training data. ALSFRS decline by 10 points is
considered as the positive class in the model, with patients having less
than 20 ALSFRS points are removed from the cohort to ensure data
integrity.

The features identified from PCA and bivariate analysis were further
refined using “Forward Stepwise Logistic Regression” to enhance feature
selection, resulting in a refined set comprising about 65 features. Age,
weight, height, and initial ALSFRS scores serve as control features in the
model. Modeling approaches were constructed on these refined features,
including Logistic Regression, LASSO Regression, Support Vector
Machine, Decision Tree, Random Forest, Gradient Boosted Trees,
Extreme Gradient Boosting Trees, Explainable Boosting Machine, and
Neural Networks Models.

Feature normalization and scaling were specifically applied to
Logistic Regression and Support Vector Machine algorithms to ensure
uniformity and optimal performance. Model performance is evaluated
using ROC Curve, AUC (Area under the Curve), Accuracy, Precision, and
Recall metrics. The models are developed on a randomly selected sample
comprising 80% of the dataset, with performance metrics calculated and
reported based on the remaining 20% used as test data.

Lastly, model performance optimized through a combination of
feature sets and hyperparameter finetuning, particularly using grid search.

3. Results
After the model selection process, performance across different algorithms
appears notably similar, with the Explainable Boosting Machine (EBM)
showing a distinct performance edge. The test statistics for all employed
algorithms are summarized in Table 4. The EBM is selected as the best
model, achieving an AUC (Area Under the Curve) of 0.81, an accuracy of
0.74, a precision of 0.64, and a recall of 0.73, outperforming the other
models on all metrics. Moreover, EBM is an additive model which allows
for a more detailed analysis of feature importance at both aggregate and
individual patient levels, enhancing the interpretability and applicability of
the results (Nori et al., 2021).
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Model Performance Comparison

Machine Learning Algorithm AUC Accurac
y

Precisio
n Recall

Logistic Regression 0.79 0.71 0.61 0.72
LASSO Logistic Regression 0.79 0.72 0.61 0.71
Support Vector Machine (SVM) 0.79 0.72 0.62 0.70
Decision Trees 0.60 0.62 0.50 0.50
Random Forest 0.77 0.70 0.59 0.72
Gradient Boosted Trees (GBT) 0.78 0.71 0.61 0.67
Extreme Gradient Boosted Trees
(XGBoost) 0.78 0.72 0.62 0.70
Explainable Boosting Machine (EBM) 0.81 0.74 0.64 0.73
Neural Network Classifier (Deep Learning) 0.76 0.7 0.62 0.68

TABLE 4. Model Performance Comparison: Performance metrics comparison
for all applied machine learning algorithms.

The ROC curve for the EBM, displayed in Figure 6, visually
represents the trade-off between sensitivity (recall) and specificity across
various thresholds, providing a comprehensive measure of the model's
performance.

FIGURE 6. ROC curve for the leading model which is Explainable Boosted
Machine
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The recall metric is particularly crucial due to the nature of the health
problem addressed. Recall, or the sensitivity of the model, measures the
ability to correctly identify true positives—in this study, patients who are
fast progressors of ALS. Given the severe implications of missing the
identification of a fast-progressing patient, it is essential to minimize false
negatives. To address this issue, the classification threshold was set at
40%, deliberately lower than typical defaults. This adjustment ensures the
model is more inclusive in predicting fast progressors, even if it
occasionally misclassifies some slow progressors as high-risk. By
prioritizing patient safety, this approach minimizes the chance of
overlooking high-risk patients and enhances the overall accuracy of the
prognosis. The higher recall of 0.73 achieved by the Explainable Boosting
Machine (EBM) marks a significant advantage, underscoring the model’s
utility in practical healthcare applications.

Figure 7 displays the feature importance from the Explainable
Boosting Machine (EBM) model, highlighting Bicarbonate, Creatinine,
Phosphorus, Chloride, White Blood Cells, and Calcium as key biomarkers
in the propensity model. Moreover, 'Days since onset,' 'Illness Onset in the
last 12 months,' and the 'Starting ALSFRS score' are identified as the most
significant predictors in the model. Furthermore, the first ALS-related
physical symptom observed, being bulbar in nature, and the presence of
gastrointestinal issues significantly accelerates the progression of the
disease. Riluzole, the most prescribed medication for ALS, has a very low
feature importance at 0.03, which supports literature findings on the
limited efficacy of the treatment.
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FIGURE 7. Feature importance comparison for leading features from
Explainable Boosting Machine.

For the majority of the features, the Mann-Whitney U test revealed
p-values below 0.001, highlighting their strong statistical significance,
also in the bivariate context. These features, along with their Fold Change
values, are detailed in Table 5.
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Mann-Whitney U test & Fold Change
Feature p-value Fold Change
Days since first symptom 1.3E-102 0.721
ALSFRS Starting Score 2.9E-58 0.938
Onset in the last 12 months 1.1E-46 2.002
Phosphorus 3.5E-28 1.026
Bulbar onset 5.3E-22 1.585
Bicarbonate 5.9E-18 1.022
Creatine Kinase 4.8E-17 0.849
Chloride 2.6E-16 0.994
Creatinine 2.9E-15 0.948
Creatine Kinase 8.7E-14 0.878
Weight 4.6E-13 0.965
Age 4.7E-11 1.037
Calcium 2.2E-08 1.005
Lymphocytes 6.2E-08 0.969
Creatinine % Change 9.5E-06 -8.287
Alkaline Phosphatase 3.5E-05 1.021
Albumin 3.8E- 0.992
Creatine Kinase % Change 3.8E-04 0.830
Absolute Eosinophil 1.5E-03 0.838
Platelets 1.5E-03 1.025
Hematocrit 5.4E-03 1.022
Glucose 1.4E-02 1.014
Hematocrit Change 2.1E-02 -6.319
Riluzole Use 3.4E-02 0.974
TABLE 5. Mann-Whitney U test p-values and fold change for significant
features from EBM model

The Explainable Boosting Machine (EBM) is a 'glass-box' model,
distinct from 'black-box' models such as XGBoost, Neural Networks, and
Random Forests, due to its additive nature. As an additive model, EBM
systematically combines simple models in a transparent way, allowing
each feature’s impact on predictions to be clearly understood and
quantified.

Figure 6 shows how different features are attributed to the propensity
score of two patients. In the cases of Patient 1 and Patient 2, both patients
have a very high propensity score for fast progression. The feature
comparison highlights that higher levels of chloride and
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bicarbonate—indicated by positive values in the model—contribute to
accelerating the progression of the disease for both patients.Figure 8.
Comparison of model feature attribution for Patient 1 and Patient 2.

FIGURE 8. Comparison of model feature attribution for Patient 1 and Patient
2.

For Patient 1, higher 6-month averages of absolute eosinophil,
calcium, and creatine kinase increase ALS progression speed, while
hematocrit and white blood cell changes slow it down. On the other hand,
for Patient 2, higher 6-month averages of absolute eosinophil and calcium
slow ALS progression, but creatine kinase change speeds it up. Hematocrit
and white blood cell changes indicate faster progression.

This transparency provides outputs including patient-level summaries
of significant features contributing to the propensity score, which leads to
a more nuanced understanding of model decisions. Consequently, EBM
serves as an effective tool for creating personalized treatment plans based
on detailed patient data. By identifying which factors are most influential
in accelerating ALS progression, clinicians can better target interventions
to potentially mitigate these negative influences, thereby adapting
treatment plans more effectively to individual patient needs by addressing
the most impactful predictors for each patient.
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7. Discussion
7.1 Summary of Significant Biomarkers Identified
This research aims to enhance our understanding of ALS progression
through advanced analytical models. It identifies key biomarkers such as
bicarbonate, creatinine, phosphorus, chloride, white blood cells, and
calcium as most significant in determining the progression of ALS.
Additionally, eosinophil, weight, alkaline phosphatase, albumin, and
creatine kinase are recognized as significant, though to a lesser extent,
which contrasts with previous studies that identified these as the most
significant biomarkers (Chiò et al., 2014; Ong et al., 2017; Yang et al.,
2023).

7.2 Comparison with Previous Studies and Deepening Insights Further
White Blood Cells:
The white blood cell count includes neutrophils, lymphocytes, monocytes,
eosinophils, and basophils, all of which are vital for the immune response.
This study finds that changes in the aggregate white blood cell count,
along with specific components such as lymphocytes, absolute
eosinophils, changes in eosinophil levels, and absolute basophils, are
significant in ALS progression.

Total White Blood Count: This study aligns with Murdock et al.
(2017), who found a significant correlation between changes in total white
blood cell counts in a study involving 119 participants. However, they
noted that it remains unclear whether white blood cell count had a positive
or negative effect on ALS progression. This study deepens the
understanding of how changes in white blood cell counts impact ALS
progression, revealing that significant changes (2 × 10^9/L cells or more)
correlate with faster disease progression, whereas more stable counts are
associated with slower progression. On the other hand, Cui et al. (2022)
observed increases in total white blood cell count over time in ALS
patients without an association with disease progression, which contrasts
with both this study and Murdock et al. (2017).

Neutrophils: Cui et al. (2022), observed increases in neutrophils over
time in ALS patients without an association with disease progression. In
contrast, Murdock et al. (2017) and Murdock et al. (2021) findings support
the correlation between neutrophils and ALS. Specifically, Murdock et al.
(2021) identified a correlation between higher neutrophil counts and
shorter survival time in a study of 269 participants. However, they did not
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make a claim on whether neutrophil levels had a positive or negative
correlation with ALS progression. Although neutrophils does not emerge
as a significant biomarker in this study, changes in the overall white blood
cell count, which would track changes in neutrophils, are identified as a
significant feature.

Eosinophil and Lymphocyte Levels: In the findings of Yang et al.
(2023), based on a small cohort study of 59 ALS patients, a statistically
significant difference in eosinophil count and lymphocyte percentage was
observed. However, their study found only eosinophil count to be
correlated with ALS progression, whereas this study identifies both
eosinophil count and lymphocyte percentage as significant. Additionally,
Murdock et al. (2017) found a significant correlation between changes in
CD4 T cells, a type of lymphocyte, and ALS progression. Partial
dependence plots from this study reveal a slight positive correlation with
faster ALS progression at lower eosinophil levels (0.05-0.184 × 10^9/L
cells) and a slight negative correlation at higher levels (2.46-2.73 × 10^9/L
cells), although the effect size remains small. Moreover, lymphocyte
percentage levels lower than 25% are correlated with increased risk of
ALS progression, with the normal range for lymphocytes being 16-33%.
Other Blood Cells Indicators:

Hematocrit: Hematocrit is a measure of the proportion of red blood
cells in the blood, helping to assess overall health, particularly the blood's
ability to carry oxygen. This study shows that higher hematocrit levels and
increases in hematocrit are correlated with a higher risk of fast ALS
progression. Mandrioli et al. (2017)'s findings align with this study, noting
that hematocrit is directly associated with the odds of survival or
tracheostomy. Additionally, red blood cell count is identified as a medium
feature importance predictor for ALS progression in this study.

Platelets: Platelets are small blood cells that play a crucial role in
blood clotting and wound healing. In this study, platelets rank as medium
significance in ALS progression prediction. Although there is limited
research directly linking platelet levels in the blood with ALS, few studies
have explored the correlation between platelet serotonin levels, platelet
malfunction, and ALS (Dupuis et al., 2010; Leiter and Walker, 2020).
Electrolytes:

Electrolytes are minerals in the body that carry an electric charge and
are essential for various physiological functions, including fluid balance,
nerve signaling, muscle contractions, and maintaining acid-base balance.
Out-of-normal values of electrolytes can indicate various illnesses or
health conditions, making their monitoring important for overall health. In

20 Intersect, Vol 18, No 1 (2024)



Yilmaz, Novel insights into amyotrophic lateral sclerosis progression through machine learning

this study, chloride, bicarbonate, and potassium are identified as
significant electrolytes impacting ALS progression.

Chloride and Bicarbonate: Chloride and bicarbonate levels are
associated also with acid-base (pH) imbalance. This study corroborates
previous findings from Stambler et al. (1998), Qureshi et al. (2008), and
Manera et al. (2023), which indicate that lower chloride levels are
associated with faster disease progression and shorter survival time in
ALS patients. Ong et al. (2017) further supports this by showing that
decreasing chloride levels correlate with a higher risk of death. However,
in this study, the change in chloride levels was not statistically significant
in the machine learning model, even though the chloride level itself is a
significant factor.

Qureshi et al. (2008) also demonstrated that higher bicarbonate levels
correlate with shorter survival times in ALS patients. Additionally,
Hadjikoutis and Wiles (2001) indicated that high serum bicarbonate and
low chloride levels are metabolic indicators of chronic respiratory
acidosis, which is associated with respiratory muscle weakness in patients
with Motor Neuron Diseases (MND). Ong et al. (2017) expanded on this
by suggesting that patients with higher bicarbonate and lower chloride
levels are more likely to experience severe respiratory issues, with
respiratory failure being a more likely cause of death.

This study enhances the current understanding of ALS progression by
identifying a critical bicarbonate level of 26 mmol/L, above which the risk
of fast ALS progression increases, compared to the normal bicarbonate
range of 18-23 mmol/L. Additionally, chloride levels below 101 mmol/L
are associated with faster ALS progression, with the normal range for
chloride being 98-106 mmol/L. The study further shows that bicarbonate
levels are monotonically positively correlated, and chloride levels are
monotonically negatively correlated, with faster ALS progression. These
findings underscore the importance of closely monitoring these electrolyte
levels in ALS patients to better understand and potentially manage disease
progression.

Potassium: This study indicates that a decrease in potassium levels
correlates with better outcomes, which aligns with the findings of Gentile
et al. (2023). Their study of 836 patients demonstrated a negative
correlation between potassium levels and changes in ALSFRS-R scores.
However, Sun et al. (2020) contrast with this study, as they did not find a
clear association between potassium levels and ALS mortality risk.

Sodium:While Manera et al. (2023) found a significant correlation
between serum sodium levels and ALSFRS-R, this research did not
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identify sodium as a significant factor in ALS progression. This suggests
that although sodium levels may be correlated with the ALSFRS-R score,
they are not predictive of score decline or disease progression. Similarly,
Sun et al. (2020) did not find a clear association between sodium levels
and ALS mortality risk, aligning with this study.
Mineral Balance:

Mineral balance, particularly involving calcium and phosphorus, is
critical for various physiological functions, including those that support
neurological health. This study shows that calcium and phosphorus levels
are related to ALS progression.

Calcium: Calcium is essential for neurons, and research has shown a
connection between calcium imbalance and neurodegenerative processes
in amyotrophic lateral sclerosis (ALS) (Katzeff et al., 2020). Most
research in ALS literature has focused on intracellular calcium, with
limited studies on serum calcium. This study finds that higher calcium
levels, specifically above 2.3 mmol/L, where normal range is 2.2-2.5
mmol/L, are associated with faster ALS progression. However, Sun et al.
(2020) contrast with this study, as they did not find a clear association
between serum calcium levels and ALS progression.

Phosphorus: Although not widely studied in ALS literature, higher
phosphorus levels are found to accelerate ALS progression in this
research. Gordon and Lerner (2019) showed that phosphorus levels
correlate with ALSFRS scores, and this study extends their findings by
demonstrating that phosphorus levels play a significant role in ALS
progression.
Metabolites and Other Biochemical Markers:

Albumin: The relationship between albumin and ALS progression has
been explored by Sun et al. (2020), Hertel et al. (2022), and Gentile et al.
(2023). While Hertel et al. (2022) observed a correlation between albumin
levels and ALSFRS scores, they did not find a significant impact on
disease progression. In contrast, both Sun et al. (2020) and Gentile et al.
(2023) observed that lower albumin levels were associated with shorter
survival. Similarly, this research confirms a similar association between
lower albumin levels and faster ALS progression in a larger patient cohort,
analyzed within the context of a much broader set of features. This study
enriches the understanding of albumin's role, demonstrating a more
nuanced relationship between albumin levels and ALS progression. The
analysis reveals that the risk of disease progression increases until albumin
levels reach 40 g/L, beyond which the risk decreases, suggesting that
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while albumin is beneficial, its impact varies across different levels. The
normal range of albumin is 35-50 g/L.

Creatinine: This study corroborates the findings of Sun et al. (2020),
who studied 399 patients, and Gentile et al. (2023), who analyzed 836
patients. Both studies identified a strong association between lower
creatinine levels and increased ALS progression, noting a link to higher
mortality risk. Specifically, this study demonstrates that creatinine levels
below 60 mmol/L are associated with accelerated ALS progression,
indicating a worse prognosis. The normal range for creatinine levels is
53-106 mmol/L. Additionally, the study reveals a significant correlation
between changes in creatinine levels and ALS progression: a more than
12% increase in creatinine levels within the cohort is linked to a higher
risk of progression and a sharper decline in ALSFRS scores over the
six-month observation period.

Creatine Kinase (CK): This study finds that significant fluctuations in
CK levels—specifically, a decline of 50% or more or an increase of 70%
or more—are strongly associated with ALS progression. This contrasts
with the findings of Gentile et al. (2023), who observed a positive
correlation between CK levels and ALSFRS-R scores at the time of
diagnosis but did not find any correlation between CK levels and the rate
of disease progression.

Glucose: Sun et al. (2020) identified both higher blood glucose levels
and increasing glucose levels as being related to a higher mortality risk in
ALS patients. In a related vein, Gray et al. (2015) and Wuolikainen et al.
(2016) observed elevated glucose levels in the cerebrospinal fluid of ALS
patients. This study also finds that higher blood glucose levels correlate
with faster disease progression, although the feature importance of glucose
is much lower compared to other biomarkers.

HDL Levels:Mixed findings are reported regarding the impact of a
patient's lipid profile on ALS prognosis. For example, Rafiq et al. (2015)
found no relationship between lipid profile and ALS prognosis, whereas
Hertel et al. (2022) identified HDL levels as significant. However, this
study does not support the significance of HDL. It's also important to note
that Hertel et al. (2022) reported borderline significance for HDL, based
on a cohort of 1,084 ALS patients, with a p-value of 0.044. This
borderline significance might explain why HDL levels are not showing up
as significant in this study, as more significant features may have greater
feature importance in explaining ALS progression.
Non-Blood Marker Factors:
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Bulbar Onset: Christensen et al. (1990), Testa et al. (2004), Elamin et
al. (2015), Daghlas et al. (2017), and Pudasaini et al. (2022), all
demonstrated that bulbar onset is correlated with a worse ALS prognosis.
This study also confirms this finding.

Age: This study corroborates the findings of Preux et al. (1996),
Louwerse et al. (1997), Christensen et al. (1990), Stambler et al. (1998),
and Testa et al. (2004), all of which emphasize the significance of age on
ALS prognosis. Specifically, older age is correlated with faster disease
progression and shorter survival time. Based on the cohort studied in this
research, patients over 50 are more likely to have faster ALS progression.

Days since disease on set: Patients who experience disease onset
within the last 12 months exhibit faster disease progression, as indicated
by this study. These patients also have shorter times from onset to
diagnosis, suggesting that their symptoms were prominent enough to
prompt quicker medical attention compared to those with longer
diagnostic timelines. Stambler et al. (1998) and Testa et al. (2004)
similarly demonstrated that a shorter time from onset to diagnosis is a
predictor of survival, aligning with this study's findings. Moreover,
Turabieh et al. (2023) emphasized the importance of factors such as days
since disease onset in predicting changes in the ALS Functional Rating
Scale-Revised (ALSFRS-R) slope, further supporting this study’s
conclusions.

7.3 Evaluating Blood Marker Correlations with ALSFRS Scores: A Focus
Beyond Decline
Gordon and Lerner (2019) studied the Pro-ACT data with a sample of
3,772 patients, examining the correlation between blood markers and
ALSFRS scores. Their findings indicated that chloride, alkaline
phosphatase, phosphorus, CK, and creatinine have higher feature
importance in determining the ALSFRS score. This study extends Gordon
et al.’s work by analyzing the change in ALSFRS scores, providing
insights into indicators of faster decline in ALS health outcomes. The
findings of this study show that Gordon et al.’s identified blood markers
are also applicable to score changes. Additionally, this study highlights
other highly significant factors, such as bicarbonate, red blood cell count,
white blood cell count, and changes in certain blood markers over the
observation period, as important indicators of changes in ALSFRS scores
which are not part of significant features of the ALSFRS score correlation
in Gordon and Lerner (2019) study.
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7.4 Advancing ALS Biomarker Research: Extensive Data and Methodological
Strengths
This study stands out by employing the Explainable Boosting Machine
(EBM) model, a cutting-edge algorithm that provides transparent insights
into how each feature influences ALS progression. EBM identifies
non-linear relationships and interactions, making it superior for
understanding the complex dynamics at play and facilitating the
development of tailored treatment options at the patient level, all while
maintaining transparency.

This research distinguishes itself from previous studies by leveraging
one of the most comprehensive datasets available in the field, allowing for
an analysis that incorporates a significantly larger number of features
compared to prior efforts. Many previous studies have produced
conflicting results due to their reliance on different patient datasets with
limited scope, often identifying only a few significant factors in isolation,
constrained by smaller sample sizes and a narrow range of features. This
limitation in scope frequently prevents a nuanced understanding of the
complex interactions among various biological markers and their impact
on disease progression.

In contrast, the extensive dataset of 6,000 patients utilized in this
study captures both the heterogeneity of ALS patients and the complexity
of relevant features, offering a more nuanced understanding of the disease.
By incorporating a wide array of features (400+) achieved through
intensive data cleaning techniques and the creation of new longitudinal
features, and analyzing them collectively, this study uncovers additional
significant biomarkers that may have been overlooked in earlier research.
The findings are also more comprehensive, as the analysis identified many
more significant features within the same model, accounting for all
interactions and dependencies between them, providing a deeper
understanding of disease progression. The use of advanced statistical
techniques and machine learning models allows for the capture of intricate
dynamics within the data, further enhancing the study's predictive
accuracy.

7.5 Limitations
These findings should be interpreted within the context of several
limitations. A major challenge was the high percentage of missing values
in the PRO-ACT dataset, necessitating the exclusion of numerous
biomarkers and thereby limiting the depth of our analysis. Employing a
subset of patients with more complete data may reveal additional
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significant features. Furthermore, the intermittent data collection and the
dataset's cutoff at 2022 limited our capacity to observe recent trends in
ALS progression or treatment responses. The models will need retraining
when new data becomes available to stay current. Lastly, traditional
machine learning models do not consider confounding variables. To
confirm causal relationships between significant features and ALS
progression, future studies should employ causality-based models using
advanced techniques such as Double ML, quasi-experimental methods, or
validate the findings through clinical trials.

7. Conclusion
This research successfully navigates its constraints to chart promising
directions for ALS research. The machine learning models deployed
demonstrated performance metrics that stand out in the PRO-ACT
database literature, with an expanded list of significant biomarkers
identified. The EBM model exhibited superior performance compared to
other algorithms employed in the study. Notably, the identification of 24
blood-marker-based features correlated with ALS progression marks a
significant advancement in the field. Among the most impactful drivers
identified are Bicarbonate, Creatine Kinase, Creatinine, Chloride,
Calcium, and Phosphorus.

Moreover, the EBM model's transparency offers unparalleled
interpretability by providing clear, additive analyses of how each feature
influences disease progression. This interpretability enables more
personalized treatment insights, surpassing previous studies reliant on
smaller clinical samples or less interpretable black-box models.

By leveraging a comprehensive dataset that captures both the
heterogeneity of ALS patients and the complexity of relevant features, this
study provides a more robust foundation for understanding ALS
progression. The use of advanced machine learning models ensures that
the findings are reliable, offering a valuable basis for developing targeted
interventions and enhancing future ALS research.
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