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Abstract
The rapid spread of infectious diseases poses a significant global health
challenge, requiring timely and accurate detection for effective
intervention. Traditional disease detection services, such as the Centers for
Disease Control and Prevention (CDC) and the World Health Organization
(WHO), play a crucial role in monitoring and responding to outbreaks.
However, these services are largely inaccessible to people worldwide due
to their high costs and resource-intensive processes, as they often rely on
expensive data sources. Fortunately, satellite images are a great alternative
data source. Modern satellites can provide detailed images that display a
region’s financial status and pollution levels, two critical metrics in
potential disease outbreaks. Therefore, this study aimed to develop a more
affordable algorithm (SatNet) that utilizes publicly available satellite
imagery to perform disease hotspot detection. The algorithm works by
retrieving zoomed in satellite images of the city inputted by the user and
feeding these images into a novel, hybrid, recursive convolutional neural
network. This model, designed to classify regions within the images as
low-income, high-income, or industrial areas, was trained and tested on a
custom data set of 7,448 images and achieved a 94.872 training accuracy
and 84.183 testing accuracy. The output of this model is then used to
create a detailed heat map for the city, which indicates the regions most in
danger of disease outbreaks. Overall, the affordability and accessibility of
SatNet will allow governments/organizations worldwide to provide their
people with the healthcare they need and significantly reduce the spread of
diseases in an increasingly interconnected world.

https://github.com/ParkiratS/OfficialSatNet
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I. Acknowledgements
Data Availability
The data that support the findings of this study is available in Google
Drive at the following link. This data was derived from google maps,
available at the following link.

II. Introduction
A. Inspiration
Infectious diseases are illnesses caused by bacteria, fungi, or viruses that
enter a living body and multiply to create an infection that triggers the
immune system response [1]. The severity of these diseases can vary
significantly, with some causing mild discomfort in the form of light
fevers or body aches. In contrast, others can be life-threatening, such as
compromised immune systems or damage to vital organs [1]. However,
what truly makes these illnesses so dangerous is their ability to spread
rapidly through the air, bodily fluids, human-to-human contact, or even
animal-to-human contact. Thus, infectious diseases have long plagued
humanity, causing widespread devastation and posing significant
challenges to public health systems worldwide [2]. The recent emergence
and rapid global spread of the novel coronavirus disease 2019
(COVID-19) has further highlighted the severe consequences of infectious
diseases on modern society. During its 3-year, 3-month, and 5-day spell as
a global pandemic, COVID- 19 would infect over 760 million people
worldwide and be responsible for over 690 thousand deaths [3].
Furthermore, the increasingly interconnected global economy would suffer
greatly as the pandemic would disrupt global supply chains, leading to
rapid inflation (as high as 8.73 percent according to the World Bank) and
high unemployment rates throughout the world [3]. These consequences
have led many experts to argue for preventative measures and proactive
action to reduce the spread of future infectious diseases [4]. As such, many
have highlighted the need for more effective disease monitoring systems
to accurately predict the spread of illnesses within regions to ensure proper
action is taken [4]. This is further supported by recent findings, which
show that the recently implemented smartphone-based contact tracing
significantly reduced the spread of COVID-19 throughout the countries
that utilized this technology [13]. Still, there are far more accurate and
effective methods of limiting the spread of diseases. One such method is
Disease Hotspot detection, which aims to detect or predict specific regions
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within countries, states, or cities that are most likely to have the highest
concentration or number of cases [14]. By identifying these locations,
government agencies or private organizations can allocate resources to
these areas and stop the outbreak from spreading further. Currently, many
countries across the world have developed health programs such as the
Centers for Disease Control and Prevention (CDC) and the World Health
Organization (WHO) to develop disease hotspot detection systems, yet the
operational costs of these programs make them inaccessible for a large
percentage of the world’s population.

B. Economic Dilemma
The American Center for Disease Control and Prevention (CDC),
responsible for monitoring and preventing the spread of infectious
diseases, had a budget of 10.675 billion dollars for the 2023 fiscal year [5].
With a population of approximately 335 million, America will spend
roughly 31.87 dollars per person on disease control in 2023 [5]. The total
budget of 10.675 billion dollars is about 0.2 percent of the 4.8 trillion
dollar revenue the U.S. government is projected to earn in 2023 [7]. On
the other hand, if a developing country such as Pakistan spent the same
31.87 dollars per person for its population of roughly 234 million on
disease control, the total budget would have to be 7.457 billion dollars.
This would amount to approximately 19.83 percent of their 376 billion
dollars projected government GDP for 2023 [6]. Case in point, many
countries worldwide, like Pakistan, simply can not afford traditional
government-funded programs for disease control. This is largely because
most programs, like the CDC, tend to use hospitalization records and
government-funded national censuses to build disease hotspot detection
services [8]. It is custom for doctors and medical professionals in the
United States to record a patient’s date of visit, illness, and treatment in
sophisticated computer programs that supply this data to central federal
databases [8]. However, most countries around the world do not possess
the resources to provide computers within hospitals/clinics, afford
collection software, or even create a federal medical database [9].
Therefore, the lack of traditional medical data limits these countries’
health programs from being able to create any algorithms or tools that can
protect their populations against disease outbreaks.

C. Satellite Imagery
Due to the high costs of traditional sources of data (as mentioned in
section 1.2), the goal of this study was to identify and utilize alternatives
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for disease hotspot detection. The alternative source of data needed to be
easily accessible, affordable, and equally as effective as hospitalization
records or nationwide censuses. Our search led us across multiple sources
of data, such as pollution records, weather data, and population density
information, but ultimately, satellite images were chosen. Modern satellite
technology has allowed corporations and governments around the world to
image large parts of the planet using high-definition cameras. These
images provide a level of detail that makes them a capable replacement for
traditional numerical data used by the CDC and WHO. This is
demonstrated in the diagram below:

FIGURE 1: Suburb of Harrisburg, PA USA

FIGURE 2: Slum in Rio De Janeiro, Brazil

Individual buildings, streets, and geographical features are clearly
visible which provides a great insight into the financial and living
conditions of the people in that area. Additionally, there exists a plethora
of websites that grant users access to their satellite imagery database
through APIs at low costs. In fact, the accessibility and affordability of
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satellite images have made them a popular source of data for prior
urban-related forecasts/predictions. For instance, researchers from Korea
and Hong Kong utilized satellite images to predict economic changes
within specific regions of a city [17]. They collected satellite images
across a timeline to identify urbanization (high-density housing, industrial
buildings, roads, etc.) and predict the new economic output of a region.
Achieving an accuracy of 71 percent with the ”Night-light only” satellite
images highlight the reliability of utilizing satellite images [1]. In addition
to this, researchers have also been able to utilize satellite images of urban
regions to predict the spread of communicable diseases by identifying
regions of high-density population. This is especially applicable to this
research as being able to identify population densities, road networks, and
housing conditions will be crucial to disease hotspot detection [18].
Therefore, the affordability, accessibility, and effectiveness with image
classification models make satellite images a sensible data source for the
purpose of this research.

D. Purpose
The purpose of this research is to showcase how satellite images and
advanced image classification models can be used to create a cheaper form
of disease hotspot detection. The creation of such a tool will allow all
countries to take proactive action against diseases and ensure that any
outbreak is quelled before it is allowed to spread. This has been a major
point of emphasis for medical professionals who argue that early detection
of disease hotspots would significantly reduce the spread of
communicable diseases. By doing so, global and local populations will be
allowed to grow safely while also allowing them to maintain or even
expand their economic activity [23]. Though not widely deployed, a few
nations have begun to utilize early disease outbreak technologies, which
have shown excellent results. For instance, Myanmar began mobile
tracking to monitor and predict the spread of communicable diseases
throughout the country. This allowed them to allocate medical resources
and personnel to regions predicted to experience an outbreak before it
spread too far, thus protecting their citizens against major epidemics [22].
Ultimately, the software developed for this research will serve to build
upon the existing early disease outbreak detection tools (cellphone
surveillance, pollution ) by utilizing an alternative source of data, satellite
images, for a more accurate/robust analysis. Utilizing satellite images also
allows governments and organizations to respect citizen privacy, as they
wouldn’t need to track the populations’ movements or store large amounts
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of patient data. However, due to the budgetary restraints of this research,
the final product (the SatNet software) should be viewed as a prototype to
be improved upon in the future. It should serve as inspiration for how
satellite images and image classification can be used in epidemiology.

III. Method
A. Overview
The overarching purpose of this study was to create software that would
accurately and affordably provide disease hotspot prediction for any city
worldwide. Furthermore, it was intended for this software to be easy to use
so that anyone worldwide, regardless of their medical expertise, could
effectively use this tool. Thus, much of the initial research period was
spent on designing a software architecture that would fulfill these
requirements. After Seventeen iterations, the final design was established
(shown in the figure below):

The software starts by allowing a user to input the name of the city for
which they wish to see disease hotspot detection analysis. Following this,
data for the city is gathered, including zoomed-in satellite images that
cover a 25-square-mile area of the city and its demographic/economic
information. The aforementioned regions captured in the satellite images
are then classified based on financial, pollution, and quality-of-living
factors while the demographic/economic data is used to produce an overall
disease risk index for the city. Finally, a detailed visual is created which
clearly indicates the regions

FIGURE 3.: Diagram of the proposed software’s overall architecture.

within the city that are in most danger of a disease outbreak (identified
using the satellite images and image classification model) while the
overall risk index quantifies the level of risk the city in total faces
compared to other cities in the world. Further details about all of the
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elements within the software’s architecture diagram will be discussed in
the following subsections.

B. User Input and Data Acquisition
The first thing the user is greeted by when opening the software is a
prompt that allows them to type in the name of the city for which they
would like to perform disease hotspot detection analysis. After the city
name is acquired, the program then works on gathering the necessary data.
For this, third-party databases would have to be accessed through special
programs known as APIs (Application Programming Interfaces). APIs
allow programs on a device to access foreign computers/databases to find
and retrieve data available within them. The software developed for this
study utilized APIs in two instances, the first being to collect satellite
images of the city. For this task, the Google Maps API was used since it
provides high-quality images, is low-cost (28,500 API calls for 200
dollars), and is easy to use because of its extensive documentation
(available here). One of the downsides of the Google Maps API is that it
does not accept city names within its call requests, rather it relies upon the
geographic coordinate system to provide satellite images for desired
locations. Therefore, the exact coordinates of a city are required to acquire
its satellite images, a task accomplished by GeoCode. This is a Python
library that takes in the name of the city, searches up the name on Google
Search, and then retrieves the coordinates of a central location within the
city from the search result. However, this raised another issue. With just
one pair of coordinates, only one Google Maps API call could be made
resulting in the satellite image having to be very zoomed-out to cover the
25 square miles target zone.

FIGURE 4.: Satellite Image capturing 25 square mile area of Rio De Janeiro.

With the image being this zoomed-out, the individual features
(buildings, roads, and terrain) are impossible to identify and distinguish. In
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turn, it would be impossible for an image classification model to be able to
accurately classify the different regions within the image due to the lack of
clarity. So, the solution to this problem was to gather multiple individual
zoomed-in images of the various regions. Specifically, 400 images are
collected, each capturing a 0.25-mile by 0.25-mile section of the city,
which, when arrayed together in a grid pattern, create the intended 5-mile
by 5-mile satellite image of the city. This is shown in the diagram below:

FIGURE 5.: Satellite Images City Grid Diagram

However, this solution presented a problem of its own: each of the
400 images would require its own set of coordinates for the Google Maps
API calls. These coordinates could not be gathered using GeoCode since
GeoCode only returned one pair of coordinates per city (the coordinates of
a central location within the city). Thus, each of the 400 pairs of
coordinates (longitude and latitude) would have to be calculated
individually. Calculating the latitude for each of the coordinates was rather
easy as, according to the United States Geographical Survey, 1 degree of
latitudinal shift is approximately 69 miles. Thus, a 0.25-mile shift would
equate to 0.00362 degrees. Meanwhile, due to Earth’s spherical shape, a
longitudinal shift is not directly proportional to a change in miles. Rather,
this relationship depends on the latitude at which the coordinate exists. For
instance, a 1-degree change in longitude at a latitude of 30 degrees would
equate to roughly 519 miles, while the same change in longitude at a
latitude of 60 degrees would equate to roughly 300 miles. To calculate the
new longitudes, a special formula developed by topographers at the Red
Rock Canyon Conservation was used, which goes as follows:

δ𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 =  1
𝑐𝑜𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × π

180 ) × 69 
× 0. 155

Using these methods, the latitudes and longitudes of each of the 400
coordinate pairs are calculated in relation to the central coordinates
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obtained from GeoCode to form the 5-mile by 5- mile satellite image of
the city. Following this, the Google Maps API is called with these new
coordinate pairs to obtain and store the satellite images for use in the
image classification model.

The second instance of an API within this software was to collect
demographic/economic data from the World Bank Database. This API was
used to gather 12 key metrics for the city’s home nation: GDP per capita
(2023), net national income per capita (2023), mortality from unsafe water
(2022), Death by communicable diseases (2022), percent of the population
with clean drinking water (2022), percent of the population that smokes
(2022), percent of population with basic sanitation (2022), percent of
population living under the global poverty line (2022), percent of
population malnourished (2022), percent of population suffering food
insecurity (2022), number of homicides per 1000 people (2022).
Alongside this data, the results of the image classification model were
used to generate the city’s overall disease risk index (process explained in
section 2.10).

C. Dataset
One of the most significant challenges during this study was finding a
training data set for the image classification model. This is because this
model was intended to take in the 400 satellite images of a city and then
classify the areas within those individual images as either high-density,
low- income (slum), high-income mixed-density (rich), or heavy industrial
(industry) regions. These classifications indicate a specific area’s financial
status, living conditions, and pollution levels and provide the user with the
necessary information to determine where disease outbreaks are most
likely to occur. However, research involving the classification of this exact
type has either not been done before or is not publicly avail- able. There
exists little space to utilize urban satellite imagery for disease detection in
general. Hence, it was impossible to find an adequate data set that could
be used to train the image classification model. So, rather than trying to
find a dataset, the effort was shifted to developing a novel dataset that
could be used to train the image classification model. For this, 2 digital
assistants were hired from Upwork with prior experience in data scraping,
collection, and classification for research purposes. These assistants were
tasked with providing a total of 22,500 coordinates: 7,500 from each of the
three continental regions involved in this study (South America, Africa,
and Southeast Asia), with 7,500 comprising 2,500 slum areas, 2,500 rich
areas, and 2,500 industrial areas from cities across the continent. All of the
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data was stored within a Google Sheets document (available here: Google
Drive Link), with the first column containing the coordinates of the
location and the second column containing the classification of said
coordinate (slum, rich, or industrial). The data collected by the digital
assistants was verified using random-selection verification. This process
included randomly choosing 450 images from the dataset to be manually
verified by the lead researchers and research mentors. If over 45 of the
randomly selected images were out of each batch (2,000 images per
batch), the digital assistants were instructed to collect a new batch.
Utilizing this approach to acquiring training data allowed the dataset to be
properly procured to this model and ensured that an adequate amount of
data was available for the training.

D. Data Pre-Processing
For training purposes, 70 percent of the dataset (15,750 coordinates) was
used as the training set, while the remaining 30 percent (6,750
coordinates) was used as the testing set. This was accomplished by using
the test-train-split method available in the Scikit-learn library. Once the
data was split, the satellite images corresponding to all of the coordinates
within the dataset were collected through 22,500 individual Google Maps
API calls. These images, stored as .PNG files, are represented by a
640x640x3 array since the resolution of satellite images gathered using the
Google Maps API was 640x640, with each individual pixel containing an
array of 3 independent RGB values ranging from 0 to 255. Because of
this, these images can be standardized by dividing all of the RGB values
for each image by 255, thus allowing the image classification model to fit
the data during training easily. Following standardization, the images were
uploaded to a Google Drive folder in order to be used within Google
Colab for training purposes. However, since both the training and testing
datasets were quite large, it was impractical to load up all the images
within the Google Colab workspace due to memory constrictions.
Therefore, an image generation class, named make-datagen, was created,
which stores image file names and classifications and only loads up
images when a new batch is required. The loaded-up images, for both
training and testing sets, are then stored within a Pandas dataset, each
consisting of 2 columns: the first one containing the 640x640x3
representing the image and the second containing the classification
corresponding to the image. These steps were used for the data
pre-processing because many prior studies found them to be ideal when
working with large and detailed images. They are able to organize the
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images, standardize the values, and initiate training without losing any
significant detail or resolution of the image [24]. After this step, the entire
Pandas dataset, which contains 1 batch, is inputted into the model either
for training or testing purposes.

E. Image Classification Model
For the purposes of this study, a novel hybrid convolution neural network
(CNN) was developed for classifying the regions within satellite images as
high-density, low-income (slum), high-income mixed-density (rich), or
heavy industrial (industry) regions. This model combined a ResNet50V2
(ResNet), InceptionV3 (InceptionNet), and MobileNetV3 (MobileNet),
each of them pre-trained on the ImageNet dataset, to create a highly
accurate image classification model. On their own, each one of these
models is very powerful with all of them scoring within the top 10 percent
of highest accuracy on the ImageNet dataset amongst other CNNs.
However, due to the complicated yet varied street patterns and building
designs in each satellite image, a superior model was needed that could
accurately identify these patterns and classify the images. Researchers in
the past have utilized hybrid CNNs to create image classification models
capable of processing large and highly detailed images. Their results show
that hybrid models achieve an accuracy roughly 3 to 5 percent higher than
individual CNNs (ResNet50 and InceptionNet) [24]. Thus, the 3
aforementioned models were used in conjunction to combine their
advantages and allow for more accurate image classification. To
accomplish this concatenation of three models, the following model
architecture was used:

FIGURE 6.: Image Classification Model Architecture
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The model starts off with an individual input layer that accepts arrays
of size 640x640x3, the same dimensions as the arrays that represent an
image. This input array feeds into the first layers of the ResNet and the
Inception, each of whose tops (input layers) have already been removed
during their initialization. Around a quarter of the way through both
models, outputs from certain layers were collected, resized, and
concatenated to serve as input values for the MobileNet model.
Specifically, the ”mixed1” layer outputs in the Incep- tionNet and the
”conv3-block1-out” layer in the ResNet were taken. Then, since the
dimensions of the output from both layers were different (”mixed1”:
77x77x218, ”conv3-block1- out”: 80x80x512), the output from the
”mixed1” layer was sent through a 2D padding layer which added 3 rows
and 3 columns of zeros to its array. Following this, the data from both
layers were concatenated to create an output of 80x80x800. This was then
connected to 2 more 1x1 2D convolutional layers, which output arrays of
dimensions 80x80x1024 and 80x80x3, respectively. Finally, the latter of
the aforementioned convolutional layer was connected to the MobileNet
model. Additionally, connections from the middle of the ResNet and
InceptionNet were created to serve as residual layers for the overall model.
The outputs from the ”conv4-block3-out” layer in the ResNet and the
”mixed5” layer in the InceptionNet were passed through two 2x2 2D
convolutional layers, 1 flattening layer, and 2 dense layers with the latter
outputting a 1x64 sized array. These outputs were to be concatenated with
the outputs of the 3 models (ResNet, InceptionNet, and MobileNet), but
since each model’s output size was different, they had to be reshaped
through a series of layers. The outputs of each model were passed through
multiple dense layers until an output size of 1x64 was achieved for all of
them. At this point, the output from the 2 residual layers, ResNet,
InceptionNet, and MobileNet, were concatenated together to create a
1x320-sized array. This was then passed through 4 more dense layers, with
the last one (final output layer) consisting of 3 neurons and a sigmoid
activation function. Overall, this model combines 3 powerful pre-existing
models in a residual architecture for optimal image classification
performance.

F. ResNet50V2
ResNet50, a convolutional neural network (CNN) architecture, has
garnered notable success by achieving a top- 1 accuracy of 0.749 and a
top-5 accuracy of 0.921 on the ImageNet database [15]. Its effectiveness
stems from utiliz- ing a residual architecture in which the output from
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blocks of convolutional layers is passed into the following blocks. This
innovative approach effectively addresses the issue of vanishing gradients,
an issue that leads to early layers within the network not properly being
trained due to diminish- ing gradients. By mitigating this problem, ResNet
enables the training of deeper networks with more accurate results.
ResNet50, specifically, consists of 50 total layers with 1 input layer, 48
convolutional/pooling/BatchNormilization/activation layers, and 1 output
layer. This model has been shown to work well with large images (high
resolution), especially when combined with transfer learning. This exact
method has been utilized in many other models that classify large images.
For instance, a recent study used a ResNet50 to detect pneumonia from
high-resolution X-ray images of patients’ lungs [19]. The large image size
and fine details of an X- ray are similar to the satellite images of a city.
Therefore, the 92.03 percent accuracy achieved by these researchers
indicates how ResNet50 will work for image classification of satellite
images. In fact, a 2021 study utilized a fine-tuned ResNet50 to identify
geological features within satellite images and was able to achieve an
average precision, recall, and F-score of 92.74 percent, 92.84 percent, and
92.76 percent [20]. The successful use of ResNet50s for large image
classification in previous studies inspired the use of the SatNet model.

G. InceptionV3
InceptionV3 is a powerful deep convolution neural network that achieved
a top-1 accuracy of 0.779 and a top-5 accuracy of

FIGURE 7.: Diagram of ResNet50V2 architecture [11]

0.937 on the ImageNet dataset [15]. Its effectiveness stems from its use of
large blocks of convolutional layers with differing kernel sizes, allowing
the network to train on many filter sizes without manual changes.
Consequently, the network can determine which filter size is optimal for
the dataset during training and can adjust its weights in order to achieve
the highest degree of accuracy. The InceptionV3 architecture is shown in
the figure below:
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FIGURE 8.: Diagram of InceptionV3 architecture [12]

H. MobileNetV2
MobileNetV2 is a deep convolutional neural network that achieved a top-1
accuracy of 0.747 and a top-5 accuracy of 0.908 [15]. While these
accuracies are not the highest compared to the other networks mentioned
above, the specialty of MobileNetV2 is its efficiency and small foot
footprint. The MobileNetV2 also utilizes a residual architecture, just like
the ResNet, but it uses significantly fewer layers and residual blocks than
its counterparts. For example, the ResNet50 contains over 23 million
trainable parameters, InceptionV2 contains 56 million, and MobileNetV2
only contains 3.4 million. It can achieve this efficiency by rapidly
downsizing input im- ages and then using the smaller dimensions with
small filtered convolutional layers to reduce the number of parameters in
the model. MobileNetV2 works best with smaller resolution images as it
means that the model has to do less downsizing, and consequently, the
images retain more of their detail. This can be seen in most practical
applications of MobileNet, such as when it is used to determine welding
quality because the input images are small. According to researchers from
Guangxi University, low-resolution and grayscale images are adequate for
assessing quality, where MobileNet’s efficiency and accuracy thrived [21].
Since the satellite images were so large, outputs from the middle
convolutional block of the ResNet and the middle layer of the
InceptionNet were used as inputs to the MobileNet since they would
reduce the image size through multiple convolutional layers. The
MobileNetV2 architecture is shown below:
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FIGURE 9.: Diagram of MobileNetV2 architecture [10]

I. Heat Map Generation
The resulting output from passing a satellite image through the image
classification model is a 1x3 array containing probability values. These
values are received from the sigmoid activation function in the final layer
of the model, and each value indicates the likelihood (in decimal values)
that a satellite image is either a high-density, low-income (slum),
high-income mixed-density (rich), or heavy industrial (industry) region.
While these arrays of probability values provide great insight, they are
challenging to interpret, leading to a need for a simple yet comprehensive
visual to organize the information better. For this, a Python library called
MatPlotLib was used to develop complex visuals, 3D models, and graphs.
In the case of this study, MatPlotLib was used to create a detailed heatmap
that indicates the regions within the city with the highest chance of a
disease outbreak. This is done by passing all satellite images related to a
city through the image classification model and storing their output arrays
into a 2D master array. After this, each of the 3 values within the
individual output arrays is multiplied by 255, resulting in a RGB array.
Since the individual arrays were stored in a 2D array, their location within
the array corresponds to their images’ location within the city. Thus, the
master array is directly fed into the matplotlib function, which accepts 2D
arrays as a parameter, to create the heatmap (shown below).
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FIGURE 10.: Heatmap of City Disease Hotspot Detection

This heatmap consists of multiple squares, each representing the
output from its corresponding satellite image being passed through the
image classification model. The output array determines the color of each
square after it is multiplied by 255, as it serves as an RGB value. A more
reddish- colored square indicates a close resemblance to a slum, a greenish
square indicates a wealthier district and a bluish square indicates heavy
industry. When all squares of the heat map are combined, it mirrors the
city’s large overall satellite image. Therefore, when put side-by-side, the
overall satellite image of the city and its heatmap allows a user to quickly
identify specific regions within a city that are most likely to experience a
disease outbreak.

J. Disease Risk Index
As important as identifying specific disease hotspots within cities,
providing a numerical indicator of a city’s overall susceptibility to diseases
is also crucial. A disease risk index was generated and displayed above the
heatmap visual. This index is calculated using demographic/economic data
from the World Bank database and the number of satellite images
identified as slum, wealthy, and industrial regions using the image
classification model. To process this data, a basic, 5- layer regression deep
neural network with an input layer that accepts 1x15 sized arrays, 3 dense
layers (16, 32, and 8 nodes, respectively), and 1 output layer (no activation
function). The model was trained on a custom dataset that assigned the
highest possible index (1.000) to the 10 cities with the most recent major
disease outbreaks recorded by the CDC. Each city on this list was passed
through the overall software to collect its demographic/economic metrics
and generate its heatmap, which provided the necessary data to train the
model. At this point, the Disease Risk Index generator was incorporated
into the overall software as the final step, which occurs just before the
visual is shown to the user. All the data is collected from the image
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classification model and the World Bank Database to create an index, as
shown in the figure below:

FIGURE 11.: Disease Risk Index for City of Las Paz, Bolivia

IV. Results
A. Accuracy
Due to the nature of this study, it is very difficult to quantify the accuracy
of the SatNet tool. This is because the whole purpose of this software was
to create software that allows users to easily identify disease hotspots
within cities. For this task, the image classification model was used to
classify the regions in satellite images based on their financial and
demographic metrics. However, there exists little to no data that catalogs
the economic and population metrics of specific coordinate locations
within cities. Moreover, the little existing economic and population data is
private and very difficult to access. Thus, it is impossible to provide exact
statistics regarding the software’s accuracy in its real-world application.
However, the results from the training and testing datasets do provide a
quantitative value. Regarding the satellite image classification model, the
network achieved a 95.56 percent training accuracy and a testing accuracy
of 87.42 percent on the dataset mentioned in section 2.3. In comparison, 3
popular models (ResNet50V2, InceptionV3, and Vgg16) were trained on
the same dataset to serve as controls, and their results are shown below.
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TABLE 1.: Training and Testing Accuracies Values of Different Models on the
Dataset Created for this Study

In addition to this, the model achieved a f-score of 85.263 percent for
high-income regions, 82.442 percent for low- income regions, and 83.716
percent for industrial regions.

It can be seen that the image classification model designed for this
study outperforms other popular CNN architectures when applied to this
dataset. On the other hand, the model created for the disease risk index
generation did not show the same promise. Due to the limited data within
the dataset, the model was overtrained as it was able to achieve a 100
percent training accuracy in less than 10 epochs. This is a clear indication
that the model was overtrained onto the data as attaining a 100 percent
training accuracy should not be possible.

B. Project Cost
One of the primary goals of this study was to ensure that any
solution/software developed for disease hotspot detection was low-cost. In
all, this study was able to accomplish this goal as the overall cost of the
project was 680 dollars. This was split into 2 main expenses: 480 dollars
paid to the digital assistants that helped create the dataset and 200 dollars
for 4 months of Google Colab Pro membership. In comparison, the
software developed in this study costs only 0.0000063700234192 percent
of the CDC’s 10.675 billion dollars proposed budget for the 2023 fiscal
year. However, due to the dependency on certain third-party APIs and
software, there is a small fee each time a user requests an analysis on a
particular city. Specifically, the Google Maps API charges 440 dollars for
250,000 call requests, and as each city requires 400 total satellite images,
the charge per city comes out to roughly 70 cents. This means that the cost
of developing the software and performing city disease hotspot analysis
1000 different times for 1 year would cost just 9182 dollars, far lower than
the annual budget of most government agencies. Therefore, this software
was successfully able to achieve its goal of affordability as the relatively
low development and use prices will ensure that anyone could utilize this
tool.

V. Conclusion
A. Impact
With the world becoming increasingly interconnected, the threat of
communicable diseases and their potential consequences has quickly
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become one of humanity’s most significant obstacles. Just recently, the
COVID-19 pandemic wreaked havoc across the planet as millions lost
their lives and the global economy was greatly disrupted. Even today, over
3 years from the start of the pandemic, its effects can still be felt to a great
degree, with rising inflation, unemployment, and homelessness rates
ravaging countries worldwide. Unfortunately, future pandemics will only
cause more devastation as the growth of intercontinental travel and
international trade significantly increases global connectivity and
interdependence. This is only amplified by the fact that many regions
worldwide will continue to lack adequate early disease detection and
disease hotspot detection due to the high price of traditional solutions.
Still, early disease hotspot detection has been heralded as an essential
development to protect humanity against future disease outbreaks.

While the software developed during this study will not entirely
eradicate the threat of infectious diseases, it could play a crucial role in
significantly reducing the danger humanity faces from future outbreaks.
By providing an affordable disease hotspot detection tool, countries and
non-profit organizations worldwide can now begin to protect their people,
many of whom were previously vulnerable. Furthermore, this software
will allow for proactive action. It will ensure that critical medical
resources, such as medications, vaccines, personal protective equipment,
etc., are sent to regions that need them the most. Ultimately, the satellite
image retrieval algorithm, image classification model, disease risk index
generator, and detailed heatmap developed in this study provide a foun-
dation for future researchers to significantly improve upon. Considering its
effectiveness, despite this study’s budgetary and time constraints, it is
likely that with greater resources, improved datasets, and increased
manpower, SatNet can be further developed and better at protecting
humanity.

B. Ethical Considerations
One of the biggest advantages of the SatNet software is how well it
upholds privacy. There is no need to track cellphone data, hospital records,
or other personal information. Instead, utilizing satellite images protects
privacy for people worldwide as these images are too general to reveal any
personal information. With that being said, some ethical issues still need to
be considered, especially in the realm of geopolitics. Just over 100
countries have satellites in space, with even fewer having high-definition
imaging satellites. Because of this, certain parts of the world, primarily
countries with satellites of their own, have far better coverage/imaging
than nations with fewer or no satellites. Additionally, countries with
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satellite imaging capabilities often exploit their technology for deep
surveillance, which greatly violates privacy rights [26]. Yet the biggest
issue is the lack of individual consent. Unlike patient records or cellphone
tracking, attaining individual consent from every person involved in a
city’s disease hotspot detection is impossible. All the people or owners of
property captured in the satellite images can't be contacted to ask for
permission to be involved in the hotspot detection analysis [25].
Ultimately, this problem of individual consent serves as the biggest ethical
concern related to the SatNet project. However, even with this issue, it is
still arguable that satellite images are less invasive than patient records or
cellphone tracking, thus making them more private. Still, this will be an
issue for future researchers to consider as they build upon this technology
and governments worldwide to allow for better and safer technological
growth in epidemiology.

C. Flaws
Throughout this study, a few compromises were made due to budgetary or
time-related factors, which should be addressed in any future research
regarding this topic. One example of this is the platform used to attain
satellite images. Because Google Maps was designed as a navigational
tool, its images are not updated very often, as the long duration of
construction/development allows Google to retain outdated maps. This is
especially prevalent within major cities, which hardly see much short-term
development due to the lack of available space. As a result, there are many
locations across the planet, and the most recent images on Google Maps
are from 2017. This is a significant issue when providing up-to-date
disease hotspot analysis as development in slums, pollution, landfills, etc.,
can not be accounted for due to outdated satellite imagery. Fortunately,
there are platforms that provide daily, worldwide satellite images, but they
were not used in this study due to their complicated documentation and
lack of compatibility with Python-based programs. In addition to this, the
Google Maps API was far more affordable, especially for large amounts of
call requests. Another area of improvement in this study was the data used
for training/testing the image classification model. Although relying on
experienced digital assistants for data collection was innovative and
effective, there is undoubtedly a level of uncertainty regarding the validity
of this data. Even though the dataset was thoroughly combed to ensure it
met the standards, the fact that a reputable researcher or institute did not
develop it brings its reliability into question. This could be mitigated by
trying to contact researchers or institutions with private data that could be
used for this project or validate the dataset created during this study.
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However, both of these are time-intensive processes that could take
months or years to reap results, during which time thousands of people
could suffer from the spread of infectious diseases. Aside from the
aforementioned, many smaller areas of improvement should be addressed
in future studies to create more efficient, accurate, and effective disease
hotspot detection software. Ultimately, the goal of this research was to
explore the possibility of using alternative data sources, specifically
satellite images, for urban disease hotspot detection through the
development of a proof-of-concept. In this regard, the SatNet software
succeeded in serving as a prototype, which will hopefully highlight the
potential this method has and will invite future development of this
technology.
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