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The history of AI is a history of games. This piece charts a centennial 
metamorphosis of machine intelligence in strategy games, from El 
Ajedrecista in 1912 to Quantum Go in 2020. The purpose of this paper is 
to highlight modern breakthroughs and disruptions in the way scientists 
understood machine intelligence, like reinforcement learning and 
quantum computing. For hundreds of years, chess was associated with 
intellectual ability, and, in the 20th Century, became the cornerstone of 
AI research. Now, in the 21st Century, researchers have expanded their 
work to include the games of Go and shogi, and even revisited chess with 
new algorithmic approaches previously unattainable. Traditional game-
theoretical approaches to computational decision-making have hit a 
ceiling due to hardware limitations as there are now more permutations of 
choices and positions than atoms in the universe, way more than a 
computer could handle. According to the 2019 Stanford AI Index, AI’s 
heavy computational requirement outpaces Moore’s Law, doubling every 
three months rather than two years. This challenged scientists’ ability to 
build intellectual machines. Thus, they grappled with what it meant for a 
machine to be intelligent and what people could accomplish with 
intelligent machines. 
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Introduction 
Over one hundred years ago, scientists dreamed of a machine that could 
play a good game of chess. For centuries, chess was associated with 
intellectual ability and thus became a criterion for general intelligence in 
AI as the game “is generally considered to require ‘thinking’ for skillful 
play” (Shannon, 1950, p. 2; Esmenger, 2011, p. 9). When algorithms 
became computationally efficient and mathematically complex, it was 
able to process more moves than the chess-playing computer’s human 
opponents but at the tradeoff of being less intellectual, unable to imitate a 
human’s sub-conscious decision-making processes. 

By the 1950s, computers could play a full game of chess without any 
modifications, such as beginning the round in an end game or excluding 
the diagonally-moving bishops, for example. Although still amateur 
level, their programs became more efficient, pursuing promising lines of 
decisions and rejecting ones with unfavorable outcomes, thus making the 
computer more productive. With each passing decade, chess-playing 
computers' skill levels matured as their computer chip speeds increased 
and evaluation functions improved, allowing them to assess an even 
greater number of potential moves and decisions per second, even as high 
as thousands per second. This outpaced human capabilities as computer 
superintelligence operated leagues beyond what was previously thought 
possible (Williams, 2017, p. 32). 

At the inception of artificial intelligence in the 1950s, Alan Turing, 
an English computer scientist and mathematician, cautioned that the 
digital computer “must have an adequate storage capacity as well as 
working sufficiently fast” (Turing, 1950, p. 441). Hardware limitations 
incurred by Moore’s Law have hindered a theoretically perfect intelligent 
master for games like chess and Go. Moore’s Law stated that computing 
speed, as measured by the number of transistors in a chip, would double 
approximately every two years (Mollick, 2006, pg. 1). Tremendous 
search spaces and exponential combinatorics for potential moves greatly 
overpowered current capabilities of regular computers to evaluate them. 
According to the 2019 Stanford AI Index Report, artificial intelligence 
was now outpacing Moore’s Law, doubling every three months rather 
than every two years (Perrault et al., 2019, p. 65-66). Recent progress in 
effective algorithms and computer architecture in AI have redefined 
intelligence for computers, transitioning from brute-force computations 
to heuristic “thinking.” 
 
A Chess-Playing Automaton 
The first major development in this area was Leonardo Torres y 
Quevedo’s El Ajedrecista. In 1912, Torres built the first autonomous 
mechanical chess player that, while it could not play a full game, was able 
to successfully carry out a specific end game strategy involving a white 
rook and a king (Williams, 2017, p. 30). He presented his contraption at 
the Paris World Fair in 1914 to the amazement of his audience. Even more 
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impressive, it also recognized when its opponent made illegal moves, 
flashing a light at them; otherwise, it would continue moving its piece 
until it checkmated the black king (“Torres and His Remarkable 
Automatic Devices,” 1915, p. 296). One Scientific American author, 
whose name was not documented, smittenly recorded the machine’s 
protests three times in his journalistic piece in the Scientific American 
(“Torres and His Remarkable Automatic Devices,” 1915, p. 296-298). He 
further wrote that its novelty lay in its ability to select “one possible action 
in preference to another” (Torres and His Remarkable Automatic 
Devices,” 1915, p.297). 

The mechanization of labor and activity characterized the zeitgeist of 
the Second Industrial Revolution, challenging Torres to automate human 
intellect. A novel concept, Torres remarked that an even greater feat 
would constitute a mechanical being that could “imitate, not the simple 
gestures, but the thoughtful actions of a man, and which can sometimes 
replace him” (Torres, 1914, p. 89). The automaton could learn from its 
environment and adapt to varying circumstances around it, responding 
appropriately to the context it registered. In Torres’s mind, self-
awareness and discernment, two human-like qualities, distinguished an 
emerging concept within automata theory from the mundane machines 
present since the First Industrial Revolution. While his other inventions, 
like the torpedo, operated self-sufficiently, his theoretical automata 
eschewed from “meretricious imitation of the human form,” an interest 
that dominated the public’s imagination since the Ajedrecista’s debut in 
Paris (“Torres and His Remarkable Automatic Devices,” 1915, p. 298). 

Later applied to digital computers, this initial conception of machine 
intelligence synthesized the thoughtfulness of the human brain with the 
intellectual capability of playing a game of chess. Scientists, 
philosophers, and mathematicians returned to this definition in the 
succeeding decades with the advent of programmable computers. 
 
Thinking Machines and Chess 
In March 1950, Claude Shannon, an American mathematician and 
engineer, sparked popular interests in chess-playing artificial intelligence 
when he proposed a set of algorithms to create a program that played 
chess. Inspired by Torres, he sought to expand the machine's faculties to 
play a full game. He hypothesized that if computers could be taught to 
play chess, they would be capable of activities like translating one 
language into another and performing symbolic (non-numerical) 
mathematical operations (Shannon, 1950, p. 1). He presupposed that this 
game was the key to unlocking numerous opportunities in computer 
applications within the confines of symbolic AI. If it could play a 
reasonably skillful game, then one would be forced to confront the 
possibility that the computer could think like a person (Shannon, 1950, p. 
2). The first step, however, was constructing a computer to play a perfect 
game (Shannon, 1950, p. 4). 
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While such a game was possible in theory, computers were not equipped 
to handle the sheer complexity and power required to execute this. 
Mathematically speaking, Shannon noted that there were 103 possible 
outcomes for a white move followed by a black one. Taking a 
conservative estimate of 40 moves per game, there were (103)40 or 10120 
potential variations after the first play. In light of Shannon’s estimate, 
modern researchers raised this approximation to 10134 potential 
variations, calculated from an average of 84 plies per game and 38 moves 
per plie, bringing the number to 3884 or about 10134 (Esmenger, 2011, p. 
11). The scale of possibilities was overwhelming, even with Shannon’s 
lower estimate. In other words, if one were to enumerate all possible 
combinations for all possible moves following from a given position at 
any point in the game through one of three outcomes (win, lose, or draw), 
they would outnumber atoms in the universe (1075). Moreover, if the 
computer were to calculate one variation per microsecond, then it would 
take 1090 years to determine the first move of the game (Shannon, 1950, 
p. 4). 

To overcome this impractical calculation, Shannon suggested two 
evaluation functions to implement in a computer chess player: Type A 
and Type B. As Nathan Esmenger, a modern historian of artificial 
intelligence, described this difference: 

 
The most obvious solution was to reduce the total number of moves that a 
computer was required to ‘look ahead’. This would make the overall decision 
tree to be evaluated smaller and more manageable, and therefore more 
amenable to straightforward computational approaches. Shannon called this 
approach a ‘Type-A’ solution, and considered it to be a brute-force method 
that did not accurately reflect the ways in which human beings played chess. 
He much preferred a ‘Type-B’ solution that used sophisticated heuristics to 
trim the decision tree by privileging certain branches over others. Like human 
grandmasters, Type-B solutions would focus only on the most promising 
lines of analysis, and would recognize in patterns of positions more general 
principles of play that would reflect a more truly intelligent approach to the 
problem of chess (Esmenger, 2011, p. 11). 
 

In short, Type A involved brute force computations and Type B used 
heuristics to select promising branches in the decision tree and was the 
most akin to Turing’s thinking machine. Even though Shannon preferred 
Type B due to its parallel to human chess players, computer scientists 
pursued research into Type A because it was more feasible to implement 
via the minimax algorithm and alpha-beta searching. Herein lied the 
difference between playing chess and being intelligent, which sparked 
decades of debate through the end of the Twentieth Century. Was 
intelligence the ability to play a good game or was there a je ne sais 
quois to simulating the human mind? 

Tackling a similar question, later in 1950, Alan Turing sought to 
answer his own inquiry “can machines think?” (Turing, 1950, p. 433). As 
one of the inaugural research questions in this nascent field, Turing and 
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other scientists of the decade associated the ability to think with 
intelligence; thus, he and his contemporaries pondered the modern 
equivalent of “can machines be intelligent?” He proposed the Imitation 
Game, a now-famous thought experiment wherein a human interrogator 
would ask a series of questions directed at two anonymous beings - one 
human and one computer - to determine which one was actually the 
machine. In the instructions, the machine would attempt to deceive the 
interrogator while the other human would try to help him. To prevent 
egregious giveaways, answers would either be written or repeated by an 
intermediary (Turing, 1950, p. 434-435). 

In one scenario, Turing imagined a person asking the anonymous 
computer if it could play chess. A linguistic note, he did not ask if it 
could play chess well, just that if it could play (i.e., if it knew the rules 
that governed the game). Following up, he asked about which chess piece 
it would play in response to a particular chess move. Judging from the 
context, it appeared to be an endgame analogous to the one El 
Ajedrecista could play, involving a king and a rook. Despite not 
providing criteria for what was considered a good move, one could 
assume that only a human could make a logical play. At least, computer 
theorists believed it to be so. As such, a thinking computer could fool the 
interrogator if its proposed move seemed human-like. In this 
hypothetical, the computer moved its rook and checkmated the king. 

Although subject to many debates within tech circles, the 
Imitation Game was the first strategy game that explicitly defined 
successful machine intelligence. Turing viewed human creativity and 
strategic analysis as reference points to judge a computer’s 
performance. This perspective fueled AI fervor for decades to come, 
pitting people and computers in an intellectual rivalry. 

 
Sunsetting Chess 
The Imitation Game’s competitive dynamic had set up the decades-long 
goal for symbolic chess-playing machines to play against human players. 
The race to create a digital chess expert drove high hopes for strong 
artificial intelligence through the 1950s and 1960s. However, Hubert 
Dreyfus, an American philosopher and notorious critic of artificial 
intelligence, criticized this seemingly blind optimism. In 1965, Dreyfus 
published his reflection on the state of AI research regarding games, 
problem solving, and language translation in his infamous book, Alchemy 
and Artificial Intelligence. 

Assessing the stagnation surrounding game research, he recalled H.A. 
Simon’s bold 1957 prediction at a meeting for Operational Research 
Society of America that “within ten years a digital computer will be the 
world’s chess champion” (Dreyfus, 1965, p. 3). However, by the end of 
the 1960s, computers could not use heuristic decision-making like 
humans could. Instead, computer scientists programmed them with Type 
A functions, albeit amateur, due to the feasibility of its implementation. 
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Dreyfus did not understand how computers could be considered 
intelligent when progress had been so unfruitful and architecture 
limitations so obstructing. While the chess-playing algorithms, like 
minimax and alpha-beta searching, had improved in the 1970s and 80s, 
scientists and the general public did not care much. It was a scenario of 
diminishing returns. As efficiency and speed progressed, there were no 
new major breakthroughs in computational chess (Esmenger, 2011, p. 7). 
From Dreyfus’s perspective, artificial intelligence was nowhere near the 
intellectual activity as it was to mere monotonous deep searching, a 
disappointing reflection that once garnered ridicule but soon became 
accepted by the wider community. 

Regarding the limitations of digital computers playing chess, he said 
one of the benchmarks for a system to equal human performance would 
lie in its ability to recall information from the fringes of consciousness, 
where it is neither disregarded nor at the forefront of thought (Dreyfus, 
1965, p. 45-46). Dreyfus discussed this to address supposed shortcuts in 
chess heuristics, something he considered a fallacious idea. Some of his 
other criteria involved taking “into account the context” and 
“distinguishing the essential from the inessential features of a particular 
instance of a pattern” (Dreyfus, 1965, p. 45-46). Likewise, people were 
capable of recognizing patterns in ambiguous and difficult conditions, 
but “work in pattern recognition has not progressed beyond the laborious 
recognition of a few simple patterns in situations which severely limit 
variation” (Dreyfus, 1965, p. 46). 

After years of disappointment and disillusionment, it was believed 
that there could be no new progress in artificial intelligence, bringing 
about the first AI Winter in the 1970s, a period when funding and interest 
in AI research declined (Paine, 2005). Marginal achievements could not 
excite the broader public anymore. 

 
DeepBlue, the Digital Grandmaster  
By the end of the 1970s, computer engineers found that a major way to 
advance brute-force algorithms was through processing speed, a feature 
that they could easily improve (Hsu et al., 1995, p. 240). Hardware 
performance being a limitation in previous decades, it soon lended itself 
to benefit research in this topic area. Starting in the late 1980s, IBM 
challenged itself to construct a successful chess algorithm in conjunction 
with its prowess in microchip development. 

Once considered a Sisyphean task, IBM constructed several chess-
playing programs, beginning with Deep Thought in 1988. That year, it 
differentiated itself as the first computer to achieve grandmaster status 
(Hsu et al., 1995, p. 240). A year later, IBM set up a tournament with 
Deep Thought against Gary Kasparov, the former world chess champion. 
The machine lost, but it inspired development for a better computer. In 
1991, IBM researchers created Deep Thought 2. 

Aware that hardware was the key, they enhanced the single chip 
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chess processor to fill in “long range chess knowledge gaps” (Hsu et al., 
1995, p. 241). They also gave it a larger RAM and a newly written search 
software (Hsu et al., 2002, p. 58). An immediate precursor to the 
DeepBlue computers, Deep Thought 2 competed publicly until it retired 
in 1995. 

IBM’s chess computer iterations led to the creation of DeepBlue I, 
which also lost to Kasparov in 1996. Throughout the remainder of that 
year, researchers rectified deficiencies in this computer in order to build a 
stronger computer, DeepBlue II. Some major changes included enhanced 
chess chip designs, repetition detection, doubling the number of chips, 
and remaking its debugging software (Hsu et al., 2002, p. 59). Trained on 
the 1996 Kasparov match, DeepBlue II’s evaluation function was built 
into its hardware, simplifying the task of programming it and allowed for 
greater flexibility in improving it (Hsu et al., 2002, p. 61). 

In 1997, DeepBlue II challenged Kasparov at the Equitable Center in 
New York. Decades of little progress were soon overlooked by this 
globally televised match. A final showdown between man and machine, 
the grandmaster won the first game, the computer won the second, and 
the last three rounds ended in a draw. Over a course of 80 years, the 
world was finally presented with the first computer to defeat a human 
world chess champion in the game, a more significant accomplishment 
than just obtaining grandmaster status. 

While a major feat, the computer was not capable of comprehending 
the moves it played; it was only able to compute them faster than its 
opponent could. Advances in computer chess stagnated when the only 
progress was faster brute-force algorithms, straying from the field’s 
original thesis to make the computer smarter. Kasparov further vented 
that he did not “know what the computer did wrong or right” nor could 
he understand its “ability to evaluate those positions” (Weber, 1997). 
IBM’s DeepBlue II was not thinking, which frustrated Kasparov. Human 
grandmasters did not think of these strategy games in terms of data but 
rather in heuristics. If implemented computationally, it would be akin to 
Shannon’s Type B approach or Turing’s thinking machine. 

Like its predecessors, DeepBlue II was an algorithmic black box but 
one that its team sought to enhance. They knew that they “could make 
the computer faster, so they concentrated on making it smarter, [but] it 
was not entirely clear how to do that” (Weber, 1997). This begged the 
question: what does it mean to make the computer smarter? If that was 
the agenda throughout AI development, then two schools of thought had 
unintentionally come forth. One focused on imitating intellect and 
another focused on winning chess, even in a roboting, mundane way. To 
re-examine the Turing question, it was clear that it was not enough for a 
thinking computer to play chess moves. An intelligent computer would 
understand them. 
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And Then There Was Go 
In a post-chess world, attention turned towards Go. Like chess, Go was 
once perceived as a game that computers could not beat since it was 
much more complex (Silver et al., 2016, p. 484). Traditional brute-force 
AI algorithms that had dominated the research space would be 
impossible for this game, unlike in chess (Silver & Hassabis, 2016). 
Facing the same obstacles from Moore’s Law as DeepBlue II and other 
chess computers, researchers in the early 2000s turned to more creative 
methods to revisit Turing’s question. 

From the start of the new millenium, Go became the new cornerstone 
of AI research. More sophisticated than chess, Go was the ideal game for 
intuition, not forward-looking predictions: 

 
The upshot is that, unlike in chess, players—whether human or machine—can’t look 
ahead to the ultimate outcome of each potential move. The top players play by 
intuition, not raw calculation. “Good positions look good,” Hassabis says. “It seems 
to follow some kind of aesthetic. That’s why it has been such a fascinating game for 
thousands of years” (Metz, 2016). 

 
With its even larger search space, brute force tree searching was 

unable to evaluate all possible moves (Qiao et al., 2020, p. 1). If chess 
had an average number of moves of 40 per game, then Go had 200 
(Metz, 2016). Unlike chess, Go’s complexity would allow scientists to be 
extra certain that the decisions made by the computer would better 
simulate actual intelligence. 

When DeepMind built AlphaGo in 2015, it revolutionized the way 
the public viewed AI as it was the first time that a computer won the 
game against a professional player, taking the lead in all five rounds. 
When it went on to compete against Lee Sedol in March 2016, the team 
boasted that its “search algorithm is much more human-like than 
previous approaches,” opting to go for a heuristic Monte Carlo search 
tree than a brute-force method (Metz, 2016). Considered a 
superintelligent move and a pinnacle moment in the tournament, 
AlphaGo’s infamous Move 37 confused Sedol as it was an irrational 
choice that no human would have made. 

What’s more telling was that, like the scientists before them, they not 
only wanted to teach computers to play a strategy game well, but to also 
beat human experts at them. In this way, the computer would become a 
superintelligent machine, drawing criticism as to how intelligent it could 
be if it did not understand what it was doing. This question had been 
masked by decades of competitiveness between people and computers. 
Go-playing computers once again faced the same shortcomings as chess: 
being an expert at a game did not give it the human-like intelligence that 
computer scientists had hoped for. 

In October 2017, DeepMind rolled out with AlphaGo Zero, utilizing 
reinforcement learning to play Go without previous knowledge or data 
about it, being trained on only its own plays. This was a radical shift 
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from the symbolic logic approach that governed chess research during 
the latter half of the Twentieth Century. Whereas AlphaGo trained for 
several months to learn Go, this version of the program outperformed it 
after 36 hours (Silver et al., 2017, p. 8). Moreover, in just three days, 
“starting tabula rasa, AlphaGo Zero was able to rediscover much of this 
Go knowledge” without being “constrained by the limits of human 
knowledge” (Silver et al., 2017, p. 14; Silver & Hassabis, 2017). 

Just a couple months later, in December 2017, DeepMind debuted 
AlphaZero, a more generalized version of AlphaGo Zero, wherein it could 
play other strategy games like shogi and chess in addition to Go (Silver et 
al., 2017, p. 2). Different from its predecessors, it was not designed to play 
any particular game but was taught the basic rules of each game “with no 
other strategies or tactics" (Vincent, 2017). AlphaZero involved less 
computations and evaluation functions than similar programs. As a point 
of comparison, it “searches just 80 thousand positions per second in chess 
and 40 thousand in shogi, compared to 70 million for Stockfish and 35 
million for Elmo.” Instead, it took a more “human-like approach to search, 
as originally proposed by Shannon” and utilized a deep neural network to 
hone in on promising sequences of moves (Silver et al., 2017, p. 5). As it 
turned out, in addition to the Monte Carlo tree search, the key to achieving 
Shannon’s Type B approach was neural networks and reinforcement 
learning. By filtering for the most optimal patterns for their play, these 
algorithms utilize computational heuristics to play chess and other similar 
games as Shannon envisioned almost 50 years prior. 

 
A Cooperative Imitation Game 
When strategy games, like chess and Go, returned to the limelight of AI 
research, the next focus shifted to the AI algorithms themselves. In 2020, 
researchers at Microsoft, Cornell University, and University of Toronto 
developed the Maia chess engine, which could understand the decisions 
it made in a given game and emulate its decision-making like a human's. 
They claimed that a “crucial step in bridging this gap between human 
and artificial intelligence is modeling the granular actions that constitute 
human behavior rather than simply matching aggregate human 
performance” (McIlroy-Young et al., 2020, p. 1677). 

Herein one is presented with yet another definition of machine 
intelligence. It was not the outcome that determined it but rather the play-
by-play decisions it presented in a chess match. Moreover, to align 
artificial intelligence with human behavior, they personalized it to play at 
different, specific skill levels (McIlroy-Young et al., 2020). There were 
already a plethora of chess engines, like Stockfish and Leela (the open-
source version of AlphaZero), that can beat world grandmasters, but it 
was no longer fun to play a game in which one consistently lost. For the 
research team, a bigger challenge was for the computer to cooperate with 
a person and essentially teach them how to play well and improve 
(McIlroy-Young et al., 2020). It could even predict a person’s decisions 
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at each individual skill level, paving the way for collaboration between 
people and artificial intelligence (McIlroy-Young et al., 2020). Maia was 
not only more accurate than Leela, but it was also explainable, so 
researchers could understand how and why it chose to play particular 
moves in chess. This challenged the fallacious dichotomy between 
accuracy and explainability in artificial intelligence. Instead of viewing 
chess-playing computers as a superintelligent opponent, the team shifted 
its perception to be seen as a teacher. 

While the words superintelligent and intelligent were contested when 
it came to describing artificial intelligence, this team ultimately shaped its 
potential to become human-like. Maia was a revisitation of the Torres-ian 
view of machine intelligence, in which the automaton - or, rather, the 
computer - imitated and simulated human thought, decisions, and 
intelligence. It even returned to Turing’s Imitation Game, where a 
computer was thought to be intelligent if it could trick a person into 
thinking it was a human, the difference being that Maia would not deceive 
them but instead help them. Imagine if in the Imitation Game, the 
computer told the interrogator how to save its king from a doomed 
endgame. That was the new philosophy of cooperative computational 
chess. 

 
Quantum Computing and Games 
While the door seemed to close on strategic games in classical 
computing, the rise in popularity of quantum computers throughout the 
2010s had opened up research areas into quantum chess and quantum Go. 
One major difference between quantum computers and traditional 
computers was that the former did not follow Moore’s Law, so it could 
not be restrained by it. Rather, they followed Rose’s Law, which stated 
that the number of qubits (quantum bits) doubled every year. This is a 
much steeper rate of growth, compounding faster than Moore’s Law. It is 
“more than 108 times faster” than a classical computer, allowing it to 
perform optimization problems more efficiently (Neven, 2015). As such, 
quantum computers would be suitable for optimizations in strategy 
games. 

In 2020, around the same time that American researchers investigated 
a human-like chess program, Chinese researchers looked into Go, or 
rather Quantum Go. While the game had been used as a testbed for 
artificial intelligence, it was not the most difficult game to teach a 
machine learning algorithm since it was deterministic and had perfect 
information; as such, it could easily search possible moves (Qiao et al., 
2020, p. 1). Hitting a ceiling with progress and public attention, the 
“community moved interest to nondeterministic and imperfect 
information games” (Qiao et al., 2020, p. 1). In an environment of 
asymmetric information, players had to guess the other player’s 
knowledge and deal with uncontrolled randomness, as in games like 
Poker or Mahjong, which made them the ideal experiments for advanced 



Lowry, Strategy Games and AI Intelligence  

 Intersect, Vol 15, No 1 (2021) 
 

11 

machine learning algorithms (Qiao et al., 2020, p. 1). 
With its quantum computer architecture, Quantum Go incorporated 

randomness into the game and could “cover a wide range of game 
difficulties,” just as Maia could with different skill levels in chess (Qiao 
et al., 2020, 7). This distinguished the quantum game-player from other 
imperfect information and nondeterministic games. It functioned outside 
the assumptions of classical game theory that guided games like chess 
and Go. As such, it became an optimal benchmark for artificial 
intelligence. Since humans could handle unpredictable circumstances, 
quantum computing could possibly be able to answer the quintessential 
question can machines think. While resolving Dreyfus’s criticisms, 
quantum artificial intelligence could handle information on the fringes of 
consciousness and take context into account, such as skill level and 
uncontrolled randomness. 

 
Conclusion 
After years of stagnation during the AI winter, computer scientists 
presented the world with thinking machines in the realms of chess and 
Go. AI capabilities overcame the restrictions outlined by Moore’s Law, 
in which computing speed doubles every two years, by implementing 
heuristic-based approaches to computational decision-making. Even 
though there were major advancements in reinforcement learning, 
heuristic tree searching, and quantum computing being applied to 
strategy games, there is a long way to go to define machine intelligence, 
let alone have games be a proxy for it. With new algorithms to model 
artificial intelligence, scientists still need to grapple with what it means 
for a computer to be intelligent. Correlation between strategy games and 
intelligence does not always equal causation. Nevertheless, with games at 
the forefront of research, scientists were able to make great 
breakthroughs in artificial intelligence, shifting the paradigms from 
symbolic logic to deep learning and thus bringing the world one step 
closer to simulating human intellect by one dimension. 
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