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Introduction 
Children in America spend an average of 1,000 hours in school each year. 

This accounts for one-sixth of their total waking hours (Department of 

Education 2008). Given this extensive time and exposure, school 

environments play a vital role in community health. This is especially true 

when it comes to the spread of infectious disease. Integral characteristics 

of traditional school environments, such as the high mixing rates of school 

children, general architectural environment, and the culture and hygiene of 

school-aged children, can lead to large outbreaks of viral diseases such as 

influenza (Gemmetto et al., 2014). This is particularly concerning because 

school-age children are an at-risk group to viral disease. Behavioral 

determinants affect children who are unaware of health risks around them 

and are typically unable to take actions to reduce their risk. Physiological 

determinants such as less developed immune systems and less capacity to 

resist vector-borne diseases and developmental determinants like 

immature organs make children more vulnerable to disease and damage in 

their early years (Gemmetto et al., 2014). 

Past proposals for disease mitigation in schools include the closure of 

schools when an outbreak occurs. However, such measures come with 

high associated social and economic costs, making alternative, less 

disruptive interventions highly desirable (Gemmetto et al., 2014). 

Recently, disease modeling has allowed for an opportunity to design 
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models of micro-interventions (Stehlé et al.) This is made possible through 

school-based viral surveillance, in particular, using high-resolution contact 

network data from school environments to model disease spread. Such 

surveillance can be an essential part of managing community health, as it 

provides early warnings for outbreaks (Gemmetto et al., 2014) and 

supports early action disease mitigation. 

The aim of our project is to use high-resolution contact network data 

from a primary school and apply social network analysis techniques to 

understand the spread and mitigation of disease within it. In doing so, we 

hope that such methods will inform the way policymakers and healthcare 

officials model, understand, and address disease spread in schools to 

ensure that neither the education nor the health of students is 

compromised. In the sections to follow, we will introduce our dataset and 

share our findings using network visualizations and descriptors, 

community detection methods, and centrality measures. Finally, we will 

discuss how our findings can inform our understanding of school policy 

development during a pandemic and what implications that has for the 

COVID-19 crisis. 

 

 

Data 
Our data captures the temporal network of contacts between primary 

school students and teachers in a private catholic school in France. The 

data was collected over the span of two days: October 1st and October 

2nd, 2009. Interactions between individuals were measured through 

sensors which were set up in the school. A total of 77,602 contact events 

were recorded between 242 individuals (232 children and 10 teachers). 

The data file identifies the unique IDs of students and teachers, their 

classes, and the active face-to-face contact interval period measured in 

seconds. Additionally, it identifies the grade that the individual studies in 

or teaches. There is no personal information about the students and 

teachers available. 

 

 

Findings 
 
Visualizing Disease Pathways 
As can be seen in Figure 1A, visualizing the two-day data results in a 

highly dense and clustered network. The black nodes below indicate 

teachers, whereas the colored nodes each represent students from a 

particular classroom. The clustering of students showcases these 

classrooms, each with their own class teacher. Some preliminary 

observations that can be made are that the teachers play a central role in 

the network, there’s distinct clustering that might lead to distinct 

communities with further analysis, and lastly, that while there are two 
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separate classes per grade, the classes at the same grade level still operate 

in close connection to one another across all grades. 

 

 
FIGURE 1A. Mapping Full Network Disease Pathways. 

 

Given the density of the figure above, it is important to further 

transform the data to make meaning of the network above. Firstly, we 

experimentally divided the data at different time intervals—three, five, and 

twelve—in order to simplify the temporal dataset. This was done in an 

effort to conserve data, as there are concerns about deleting vertices with a 

small out degree. The initial groupings, which are just cutting the network 

into thirds, fifths, and twelfths, respectively, were chosen arbitrarily. 

However, after visualizing the different intervals, as seen in Figure 1B, the 

strengths of each grouping became apparent. 

 
FIGURE 1B. Mapping Full Network Disease Pathways at Different Intervals. 



McGinley, Khan, Karamali, & Noor, Mitigation of Disease 

 4 The Cutting Edge, Vol 3, No 2 (2021) 

 

 

 

 

Each interval gives a different visualization of the network. Interval 1 

of 3 showcases the first third of the network, meaning that the network has 

been divided into thirds and we are viewing the first snapshot of the 

network. At Interval 1 of 3, the nodes in each cluster are densely packed 

together, not giving us any adequate information about the interactions in 

each class. Dividing the network into twelfths begins to break the 

temporal into distinct components, creating local bridges, and clustering in 

the network. Each class becomes separated from one another, which 

makes sense, as the temporal data is divided by twelve as it has a higher 

chance of capturing moments when students are isolated in their class 

together versus interactively mixing out at recess or in the halls. Lastly, 

we divide the network into fifths. At this interval, we can begin to 

visualize the dynamics between students a bit more clearly, both within 

their respective classes as well as within the school in entirety. We can see 

that some students also play a more peripheral role in their interactions 

with their peers. It also becomes clear that teachers from the same grade 

level interact with one another as well as their counterparts’ students. 

Overall, we decided that dividing the data into fifths was the best way to 

visualize the data set. 

In order to provide a quick snapshot of the relationship between nodes 

across the time interval, we created the visualizations of the network for 

four of the five time intervals in Figure 1C. These networks retain the 

initial clustering format of Figure 1A while also allowing us to see the 

interactions between these clusters in a narrower time window. Our 

visualizations suggest that while contacts occur mostly within each class, 

there is significant interaction between students of different classes across 

all time intervals. 

 

 
FIGURE 1C. Mapping Interval-Level Disease Pathways. 
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While we do not have metadata for the time of day, the temporal data 

was collected based on the interactions between students, hence, we can 

make educated predictions. For instance, it appears that Interval 1 of 5 

might capture a highly-interactive activity that involves the entire school, 

perhaps a school-wide assembly, while intervals 2 and 4 possibly illustrate 

interactions at recess between students and teachers. This is hypothesized 

as we see more isolated components as well as local bridges, indicating 

students socializing with one another in their preferred friend groups. 

Furthermore, Interval 3 of 5 shows strong triadic closures between class 

5A, 2A, and 1B. 

Perhaps during this time, older students were mentoring younger 

students in the classroom in a “big buddy” like scenario. Again, it seems 

that Interval 3 of 5 is capturing something more similar to classroom time 

than recess given the tightly-knit clustering of the classes. 

 

 
FIGURE 1D. Mapping Interval-Level Disease Pathways with Set Layout. 

 

 

In addition, we visualized both the network both with a set layout, 

meaning each individual node stays in place across each interval. The 

initial layout is more dynamic and uses Fruchterman-Reingold (FR), 

which draws graphs in an aesthetically-pleasing way. FR graphs position 

the nodes of a graph in two-dimensional or three-dimensional space so 

that all the edges are of more or less equal length and there are as few 

crossing edges as possible, by assigning forces among the set of edges and 

the set of nodes, based on their relative positions, and then using these 

forces either to simulate the motion of the edges and nodes or to minimize 

their energy. In other words, FR sets each node in the optimal place for the 

specific interval. However, by creating a set layout, you can see how 

individual nodes change across time because they’re always in the same 

spot, which is not the case for FR. However, since we do not have 
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information about nodes at an  individual level, this type of visualization is 

not as optimal as the FR layout, as if you look closely, the set layout is 

slightly denser and more amorphous looking than the FR version. 

 
Network Descriptors 
There were 242 nodes in the network. On average, each child has 323 

contacts per day with 47 other children. The average daily interaction time 

of each child is about 176 minutes. Most of these contact periods are short, 

but longer periods of contact are also present in the data. 

Figure 1 provides insight into the descriptors of the network to better 

understand the relationship between different nodes and the structure of 

the network. Given that our data was collected over a two-day period, 

some of the descriptors of the network do not capture the real-world 

interaction between nodes with precision. In Figure 1, we provide the 

descriptors for the entire network, alongside the descriptors for a single 

interval (1 of 5) to provide a more realistic description of the interactions 

between nodes. Given that the interval is 1 of 5, it showcases the 

relationship between nodes during the earlier hours of the day. This 

interval was chosen at random to showcase the network at any single point 

in time and provide a more realistic picture of how nodes interact and 

organize. Similar analyses can be run for other intervals to understand how 

relationships between nodes vary throughout the day. 

 

Measure 
Full Network 

(Longitudinal) 

Single Interval 

(Snapshot) 

Graph Density 2.16 0.06 

Mean Degree 1039.45 29.75 

Diameter 

(unweighted) 
4 7 

Path Length 1.73 2.15 

Global Clustering 

Coefficient 
0.48 0.45 

Local Clustering 

Coefficient 
Max: 0.04 Max: 0.96 

Out-Degree Node Max: 2121 Max: 45 
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In-Degree Node Max: 2214 Max: 47 

 
FIGURE 2. Network Descriptors for Whole Network vs. Interval. 

 

 

The graph density was 2.16. Density of a social network examines 

how connected the nodes in a network are to one another. The density 

calculated for this network is more than 1.0, which means that of all 

possible edges among the nodes, most nodes interacted multiple times 

with one another. This is plausible because of the time frame of two days 

over which the data was collected. This also adds to the graph’s overall 

visual density, as visualizing the entire network becomes amorphous. 

Hence, this is why we decided to visualize the graph at intervals. In 

interval 1 of 5, however, nodes interacted with 6% of all possible nodes. 

This suggests that in a short period of time, student interaction is much 

less than across a longer temporal period. However, the mean degree is 

very high amongst the two-day period- 1039.45- and, more surprisingly, 

also high as a snapshot. Within a single interval, on average, a student was 

interacting with 29 other students. The in-degree and out-degre measures 

support this notion of students being highly sociable. In this network, the 

diameter (without weights) is 4. This means that the maximum distance 

from one student or teacher to another is 4. The average path length was 

1.73, suggesting that the average number of steps in the shortest path 

between any two nodes is 1.73. In  interval 1 of 5, both the diameter (7) 

and the average path length (2.15) were longer given that nodes did not 

interact with each other as often in a single time period as they did over 

the course of two days. Overall, these measures suggest that there is 

frequent and physically close interaction between nodes in the networks. 

This complicates the mitigation of disease as such contacts suggest that 

spread of disease between nodes may be a highly contagious and timely 

phenomenon 

The global clustering coefficient measures the extent to which nodes 

in a graph are likely to cluster together in the network. It is the probability 

that your neighbors know each other; the likelihood that your friend’s 

friend is your friend. The likelihood of a closed triplet in this network is 

over 48%. Given that many of the students are classmates, or at the least, 

schoolmates, this figure is reasonable. The figure is similar when we look 

at a snapshot measure of the graph (44%). Meanwhile the local transitivity 

ranged from 0.00035 to 0.04301. This suggests that the students and 

teachers do not have very tight-knit groups of friends and rather are 

commonly interacting with multiple nodes, as opposed to being highly 

clustered with a single group of nodes across time. At the interval level, 

we observe tight-knit groups, while in contrast, the overview of the 

interactions reveals no tightly-knit clusters, but rather, an amorphous 
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group. This can be explained by the nature of the intervals. The intervals 

are snapshots in time, and therefore, can capture moments of close-contact 

interaction. When the scope is larger, within the whole school-day, the 

brief moments of close-contact interaction are not as prominent. 

Given that our only attribute information is whether the node is 

student or teacher, we cannot make a statement about homophily. It is 

interesting to note that when we do take a snapshot of the local 

transitivity, the figure significantly increases (with a maximum of 0.96), 

suggesting that in short periods of time, students do tend to interact within 

their cluster more commonly. An explanation for this is the difference in 

the type of interactions between nodes throughout different time periods 

(intervals) during the day. The activities students are engaged in and the 

amount of space available to them during those activities will indicate the 

local transitivity score. For example, when students are in class, we 

suspect higher local transitivity versus when they are dispersed out at 

recess. Given that our single interval is 1 of 5, indicating that it is a 

snapshot of student activity during the earlier hours of the day, we can 

conclude that it is capturing the local transitivity when students are all in a 

single classroom with limited space and high interaction between one 

another. 

The conclusions we draw from these descriptors are that the nodes in 

this network are highly sociable and connected- whether we view it across 

a two-day period or a single interval. Disease mitigation efforts must take 

into account the interconnectedness of the students and policies on social 

distancing must consider the sociability of primary school students. 

Regarding vectors of disease, in terms of the identities (students vs 

teachers) of individuals who are “super-spreaders” such queries will be 

addressed in the Centrality section. 

 

Community Detection 
Factors to consider when it comes to analyzing diseases include how 

infectious the disease is with regards to proximity and how far the disease 

can spread. A disease is considered infectious if it can spread from one 

person to another who are in frequent contact and in the same proximity. 

Therefore, when it comes to studying how infectious a disease is, we are 

concerned with students and teachers that belong to the same community 

where close proximity is frequently maintained. When it comes to 

studying how far a disease can spread, we are concerned with studying 

students and teachers across different communities where we want to see 

whether distance plays a factor. Our analysis of the data thus far reveals 

that interactions between nodes are frequent and proximal. This section 

will further explore the patterns in node interactions. 

Because no information is given on the types of communities present 

in the school, it is suitable to use community detection methods to identify 

the different communities within the school. We will examine the 

communities formed by four community detection methods: Edge-
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Betweenness, Fastgreedy, Walktrap, and InfoMap. Generally, community 

detection methods allow the network to be partitioned into different 

components with the highest modularity Q, which means that students and 

teachers with similar connections are grouped together. This is useful to 

identify the hotspots of infections, since diseases tend to be more 

infectious and ever-present around people within the same community 

where they share similar connections. Hypothetically, the clustering of 

diseases would coincide with the presence of communities and therefore, 

coincide with the clustering of nodes in the network. 

The following shows the number of communities/clusters arrived by 

each of the four methods (without performing any cut_at() operations on 

the community objects) at each interval and its modularity. 

 

 

Interval 
Community 

Detection 
No. of clusters Modularity 

1 
Edge-Betweenness 40 0.32 

Walktrap 8 0.56 

InfoMap 10 0.78 

Fastgreedy 8 0.55 

2 
Edge-Betweenness 71 0.09 

Walktrap 19 0.30 

InfoMap 24 0.57 

Fastgreedy 8 0.29 

3 
Edge-Betweenness 3 0.46 

Walktrap 9 0.66 

InfoMap 10 0.82 

Fastgreedy 9 0.66 
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4 
Edge-Betweenness 92 0.19 

Walktrap 15 0.36 

InfoMap 18 0.59 

Fastgreedy 7 0.36 

5 
Edge-Betweenness 39 0.11 

Walktrap 12 0.43 

InfoMap 19 0.68 

Fastgreedy 9 0.42 

 
FIGURE 3A. Table of Results for Community Detection 

 

 

It is interesting to note that each of these four methods arrive at very 

different numbers when it comes to detecting the communities present in 

the network. This may be due to the difference in how these four methods 

detect communities. Judging by the number of communities present by 

eye, there are approximately 7-8 communities in each interval. Therefore, 

if this were the case, then the fastgreedy method is the most accurate in 

separating the network into communities. 

The following shows how these four methods separate the network 

into the clusters: 

 
1. Edge-Betweenness Method 

Since Edge-betweenness models the number of shortest paths passing 

through an edge, it helps identify which interactions among the school 

population help spread the virus in the shortest path possible. Instead of 

trying to construct a measure that tells us which edges are the most central 

to communities, the Edge-betweenness algorithm focuses on edges that 

are most likely "between" communities 
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FIGURE 3B. Edge-Betweenness Method 

 

 

From the figure above, we see the presence of one large main 

community throughout the five of intervals, which is highlighted in red. 

Edges going to and from the red community to the other communities 

have the highest edge-betweenness, meaning that in the event of an 

outbreak, the red community serves as the greatest gateway for the spread 

of virus among the network. This implies that the most effective method to 

infect the entire school network is by infecting a node in the red 

community or a community nearby. The large red community surrounded 

by smaller communities suggests a possible social construct at play—a 

social structure within the school. We hypothesize that the red community 

might represent the upper grades within the school, possibly 3rd through 

6th while the smaller communities are the lower grades such as 

Kindergarten, 1st, and 2nd grade. In theory, it would make sense that the 

upper grades would share more “between” connections than the lower 

grades. 

 
2. WalkTrap Method 

Based on walktrap method community detection in the figure below, the 

sizes of communities change drastically throughout the time intervals. 
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FIGURE 3C. Walktrap Method 

 

 

If people in the school were to interact “randomly” within the school, 

their interactions would be analogous to the random walks used within the 

walktrap method. The number of communities formed by this method is 

between 9-19 communities. The general idea of the Walktrap Method is 

that if you perform random walks on the graph, then the walks are more 

likely to stay within the same community because there are only a few 

edges that lead outside a given community. Hence, this is why we see 

more distinct communities in the Walktrap method as compared to the 

Edge-Betweeness method. The fact that there is no one large main 

community implies that people in school actively participate in a variety 

of communities. The random walks are likely to stay within the same 

classroom cohorts as only a handful of edges lead to contacts outside the 

classroom, such as siblings or friends not within the same class or grade. 

This theory was also supported by the network’s local-clustering 

coefficients. Due to how dynamic the communities formed are as a result 

of such participation, in the event of a virus outbreak within the school, 

tracing the source of the infection would be extremely hard. 

 
3. InfoMap and FastGreedy 

Based on the communities formed by InfoMap and the fast-greedy 

method, we see that nodes with similar interactions belong to the same 

community. Therefore, if an infection were to occur, InfoMap and the fast-
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greedy method would be the best methods to find other nodes that may be 

infected. This can be done by finding other people that are represented by 

the nodes in the same community as the person who is infected. 

 

 

 
 
FIGURE 3D. InfoMap Method. FIGURE 3E. Fast-greedy Method. 
 
 

Centrality 
In previous sections, we have adopted a structural (network- and 

community-level) analysis of the spread of disease in a primary school. In 

this section, through measures of centrality, we will conduct a node-level 

analysis to better understand the role a single individual plays within the 

spread of disease in a network. We will examine centrality through degree 

centrality, betweenness centrality, closeness centrality, Eigenvector 

centrality, and PageRank centrality. Each of these measures provides a 

unique analysis and perspective on how a disease would spread in our 

network, whether through having many connections, having lots of 

influence, etc. The nodes that have the highest centrality measures in each 

of these areas will provide us with valuable information about how 

specific nodes may perpetuate the spread of disease more than others, thus 

allowing us to develop micro-interventions for disease mitigation. 

As we portioned our data into five intervals, we analyzed the 

centrality measures for each of the five intervals as well as for the 

complete data. 
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 Node: 

Degree 

Centrality 

Node: 

Betweenness 

Centrality 

Node: 

Closeness 

Centrality 

Node: 

Eigenvector 

Centrality 

Node: 

PageRank 

Centrality 

Interval 

1 

1890: 51 1551: 1340.1 1426: 

0.0003 

1673: 1.000 1922: 

0.0661 

Interval 

2 

1673: 74 1700: 813.88 1426: 

0.0001 

1673: 1.000 1916: 

0.0582 

Interval 

3 

1551: 59 1653: 1861.9 1426: 

0.0004 

1551: 

0.9824 

1909: 

0.0497 

Interval 

4 

1851: 70 1761: 718.43 1426: 

0.0002 

1730: 1.000 1922: 

0.0759 

Interval 

5 

1907: 51 1594: 1340.1 1426: 

0.0009 

1822: 1.000 1922: 

0.0668 

Full 

Data 

1695: 

2532 

1708: 401.24 1426: 

0.0025 

1665: 1.000 1922: 

0.0849 

 

FIGURE 4. 

 

 

Figure 4 shows the nodes with the highest centrality measures for 

each interval and each respective measure of centrality (approximated for 

clarity). We will analyze this data by discussing each measure of centrality 

individually and understanding its implications for our research. The 

figures that follow will visualize the centrality for each interval as well as 

for the entire dataset. 

 
1. Degree Centrality 

Degree centrality measures how well connected a node is; i.e., the node 

with the greatest number of connections has the highest degree centrality. 

In our study, this node is the student or teacher with interactions with the 

greatest number of people. In Fig. 4, we can see the numbers of the nodes 

with the greatest degree centrality in each of the intervals and in the full 

data. Interestingly, the node with the highest degree centrality changes in 

each of the intervals and in the full data. However, the nodes are all 
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students, which makes sense, as students are usually more likely to 

interact with more people than are their teachers (though they all interact 

during class, students likely also interact with one another outside of 

class). They are also almost all of different grades. The difference in the 

nodes with the greatest degree centrality tells us that those who have many 

interactions do not necessarily maintain the same degree of interactions 

consistently; that is, just because one node has the greatest degree 

centrality during one interval does not mean that that node will always 

maintain the highest degree centrality. In fact, the node with the highest 

degree centrality in the full data did not have the most in any one interval. 

 

 

 

 
FIGURE 5A: Degree Centrality. 

 

 

This data lets us identify hubs in the network through which disease 

might spread. The nodes with the greatest degree centrality measures are 

also significant ways in which the disease could spread. This follows 

logically, since the more people one knows, the more places there are for 

that person to spread a disease. So if any of the nodes with the highest 

degree centralities over the span of the data were to get infected with a 

disease, those nodes would likely be epicenters of disease spread to their 
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numerous connections. These nodes are highlighted in red in the interval 

data plots, and in purple in the full data plot in Fig. 5A. The plots exclude 

nodes with degree centralities under 25 for the sake of visual clarity 

(though the full data plot does not). Unsurprisingly, there seems to be a 

trend among the nodes with the highest degrees to be densely connected 

with other nodes, including other nodes with high degrees. This shows us 

visually where the disease might spread, and is consistent with our 

centrality results. 

 
2. Betweenness Centrality 

Betweenness centrality measures how many times a node provides the 

shortest path between two other nodes. Just as a high betweenness in a 

node could signal high conveyance of information, so too can it warn of 

high risks of disease spread. For example, if a student is the link between 

two other students (especially if they are the only link between those 

students), the spread of a disease through that student could mean a 

substantial increase in the disease in the overall network. This is especially 

true when the node is a bridge or a local bridge and connects multiple 

communities. If two communities are connected only by a single node, it 

only takes the infection of that node to spread disease to both these 

separate communities. 

Referring to Fig. 4, we see that again, different nodes have the highest 

betweenness centralities for each of the intervals and for the full data. 

 

 
FIGURE 5B: Betweenness centrality. 
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In Fig. 5B, we can somewhat observe this phenomenon of 

betweenness. The plots again exclude some nodes in the lowest range of 

values for the sake of visual clarity (as do the following plots, save the full 

data plots). Some of the highlighted nodes are more clearly of high 

betweenness; for example, in Interval 3, the node with the highest 

betweenness seems to be a kind of bridge, thus making it valuable as a 

connection among the nodes and signaling its potential for infecting other 

nodes. These nodes with high betweenness often have the shortest paths 

between two other nodes, and in terms of disease this means that they 

could easily spread the disease to other nodes or communities. 

Interestingly, node 1551, the node with the highest betweenness in 

Interval 1, has the highest degree in Interval 3. This node is a 2A student, 

but because all the nodes of highest betweenness are of different grades, it 

is difficult to draw any conclusions about this node based solely on its 

attributes. Its prevalence among centrality measures, though, suggests that 

certain nodes are more connected overall in more ways than one (i.e., in 

degree centrality, betweenness, etc.), which in turn tells us that certain 

nodes are more pivotal in the spread of disease on multiple planes. 

 
3. Closeness Centrality 

Closeness centrality is another measure that gives us valuable information 

about our network. The higher a node’s closeness centrality, the more 

easily that node can access other nodes. In our situation, greater ease of 

access can also mean greater ease of infection. Fig. 4 tells us that there is 

one node with consistently the highest closeness centrality throughout the 

intervals and full data. Node 1426 is a student in grade 5A, shown in Fig. 

5C as the highlighted nodes. 
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FIGURE 5C: Closeness centrality. 

 

 

The plots are shown at slightly different scales to best represent the 

data, but we can see that in most cases, the nodes with the highest 

closeness centralities are clustered close to one another (represented by the 

bigger nodes in the plot). Since nodes with high closeness centralities have 

relatively short distances to other nodes and can easily spread information 

or disease, it makes sense that they might be more densely connected or 

clustered. Because node 1426 has consistently high closeness measures, it 

is an essential node to the spread of disease. If one node has consistently 

the highest ease of access to other nodes, it will be a consistent player in 

the spread of disease in our network. 

 
4. Eigenvector Centrality 

Eigenvector centrality is another interesting measure with regards to 

potential infection in this network. Eigenvector centrality tells us how 

important a node is based on whom it knows. Interestingly, according to 

Fig. 4, there are several nodes with high Eigenvector centralities that also 

have had high levels of other centrality measures. For example, nodes 

1673 and 1551 both had the highest degree centralities during some 

interval. There did not seem to be any trend among these central nodes 

regarding grade level; however, this does tell us that not only are these 

nodes well connected, but they are also important according to their 

connections. 
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Eigenvector centrality can be very significant in the spread of disease 

through a network for social reasons, in addition to any simple 

connectivity reasons. A node with a high 

Eigenvector centrality can use its importance or influence to affect 

other nodes or influence the nodes with more power. A high Eigenvector 

centrality shows that the node has important connections and is important 

in itself, and both these aspects may be leveraged to change the network. 

In the example of COVID-19, a node with more influence could tell others 

to wear masks (or not wear masks) and thus influence the spread of 

disease for the better or worse. 

Similarly, that node could decide to host a party or enforce social 

distancing, and because of its importance and influence, these decisions 

could greatly affect the rate of infection. 

 

 

 
FIGURE 5D: Eigenvector centrality. 

 
 

As we can see from Fig. 5D, nodes with high Eigenvector centrality 

often cluster with other nodes of high Eigenvector centrality. This is 

unsurprising, since the importance of a node’s connections add to its own 

importance, and the important nodes must therefore be more or less 

interconnected. Thus, the clusters of nodes in Eigenvector centrality plots 

have important influence in how the rate of infection continues in a 

network. 
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5. PageRank Centrality 

Very similar to Eigenvector centrality, PageRank centrality tells us that 

the more important a node’s connections are, the more important that node 

is. PageRank is a variant of the Eigenvector centrality which applies to 

directed networks. Interestingly, node 1922 has the highest PageRank 

centrality for four of the six categories for which we measured centrality. 

Node 1922 is a 3A student that evidently has consistently important 

connections. 

 

 

 
FIGURE 5E. 

 
 

The plots for PageRank centrality are interesting in that most of them 

contain nodes that are barely connected to the network and may be only 

connected by local bridges. These nodes tend to generally be ones with 

low PageRank centrality. This makes sense, because the fewer the 

important connections that a given node has, the lower its PageRank 

centrality and the more isolated it will be in the plot. Overall, PageRank 

centrality tells us that node 1922 is substantially important in the spread of 

infection among nodes, since it is almost always the node with the highest 

PageRank centrality and thus the most importance. Similarly with 

Eigenvector centrality, a node like this one might have the power to 

influence others or use its importance to make change, whether beneficial 

or harmful. 
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We can see by looking at various centrality measures that each of the 

nodes with the highest respective centrality measures have different risk 

factors for spread of disease. By looking at centrality measures, we can 

understand how certain nodes might be more influential or might be a 

common vessel for the spread of disease. For example, when a node that 

knows the most people gets sick, that node is likely to infect more people 

than other nodes, and so on. These measures also give us a look into 

nodes’ popularities or roles within social groups, and this can also help us 

understand the spread of disease within specific networks better. Though 

there was no observable pattern of centrality (with regards to attributes, 

etc.), we observed several nodes that were important in different ways, 

such as those nodes that appear more than once as having the highest 

centrality measure. This suggests that it is not just a matter of quarantining 

students of a particular class or grade, or identifying a single node and 

removing it. Instead, we see that multiple nodes are central in this 

network, which means that social distancing as a whole is likely required 

to mitigate disease spread. 

 

 

Implications for COVID-19 
During the Covid-19 pandemic, much of normal life has come to a 

standstill. Nationwide, school closures have become commonplace as 

researchers warn that school environments play an important role in the 

community spread of infectious diseases. This is attributed to high mixing 

rates of school children. Our findings support this claim; through social 

network analysis, we identify the primary school networks to be highly 

dense and sociable. This understanding of patterns of movement in 

behavior and interaction between school-going children is the first step in 

developing models which can mitigate disease within their communities. 

Our dataset provides high-resolution contact network data from school 

environments that allows epidemiologists to implement disease modeling, 

design models of micro-interventions to mitigate disease, and compare the 

outcomes of alternative mitigation measures. 

Currently, in the United States, the closure of schools has become an 

efficient mitigation strategy, but has been shown to have never negative 

outcomes for children both socially and academically (Gemmetto et al. 

2014). In addition, the physical closure of schools and the uptake of digital 

schooling has proven to be associated with high social and economic 

costs, making alternative, less disruptive interventions highly desirable. 

Interventions that don’t involve closing schools often implement both 

behavioral mitigation strategies and physical mitigation strategies in the 

form of redesigning building layouts. For example, The Brooklyn Lab 

Charter School has partnered up with various architecture firms to 

formulate a public plan that schools around America can use and 

implement that comply with Covid Health Guidelines. Moreover, they 

show an ICT (Information and Communication Technology) classroom 
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before and after Covid, as seen in Figures 6A  and 6B. It is clear that they 

have divided the classrooms into two, allowing a similar ratio of space to 

students in a safe and healthy way. Furthermore, they are limiting each 

classroom to 15 students and everyone, including teachers and staff, has to 

wear masks and social distance at all times. 

 

  
FIGURE 6A AND 6B: The Brooklyn Lab Charter School. 

 
 

However, our findings suggest that the patterns of interaction between 

primary school children will complicate these physical distancing 

measures. The dense temporal network pattern suggests that primary 

school children are inclined to be highly-interactive, particularly with their 

classmates. Students and teachers commonly interact with multiple nodes, 

as opposed to being highly clustered with a single group of nodes, thus 

making the entire school community susceptible to disease if even one 

node is sick. Moreover, given the size of the groups that need to be formed 

to accommodate the communities in primary schools, it is almost 

impossible to continue schooling while maintaining the given number of 

groups. This makes social distancing within schools very difficult. Given 

that different nodes rate highest across centrality measures, we cannot 

simply remove a single node from schools to mitigate disease spread. 

Multiple nodes, in other words, too many students, are situated as central 

nodes in a primary school network. 

These findings collectively suggest that given the levels of interaction 

between students and teachers as shown in our findings, strict policies 

surrounding interactions between students, teachers, and classes must be 

followed to limit the interaction students are accustomed to. Based on this 

understanding of the networks of students, we propose several options that 

educators and policy makers can implement within primary schools to 

limit the disease spread (Gemmetto et al. 2014): 

(i) close the student’s specific class for a fixed duration (“targeted 

class closure” strategy); 

(ii) close the class and the other class of the same grade for a fixed 

duration (“targeted grade closure” strategy); 

(iii) the entire school is closed for a fixed duration (“whole school 

closure” strategy). 

This will forcibly reduce the contact between students and allow for 

disease to be mitigated. This is supported by the fact that the characteristic 
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common among schools that are doing well is that they are all operating 

under capacity. Such schools have opened with arrangements designed to 

minimize crowding, such as grouping students to come to school on 

different days and allowing students to attend only from home (Boyle 

2020). This would mean that students remain within their classroom 

communities and could be a possible solution to safely allow students to 

return to school. However, this too contains risks, given that unsupervised 

students are likely to interact across classrooms, as our data suggests. 

In addition, as schools begin to open up, the newest strategy deployed 

in order to avoid a spike in the rate of infections (assuming that masks are 

being mandatorily enforced on school campuses) has been that of 

architectural and resource interventions. The New York Times (2021) 

published an interactive assessment of how air circulates in a closed 

classroom compared to an open window, and a HEPA (high-efficiency 

particulate air) filter and box fan in a window.  

 
 
FIGURE 7A: Infected Air in Closed Classroom. 

 

Figure 7A illustrates air circulation inside a classroom with closed 

windows and absence of a HEPA filter and box fans. Figure 7A shows the 

air of an infected student (highlighted in blue and outlined with a red 

textbox) circulating within a classroom without proper modifications. 

Within the schematic, the darker the line, the higher viral load shedded 

within the surrounding air.  
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FIGURE 7B: Infected Air in Open Window Classroom. 

 

 

In contrast, Figure 7B depicts the difference of the infected air 

emitted from the infected students once a window is opened in the 

classroom. With such mitigation effort, there is less contaminated air 

circulating inside the classroom, but there is risk for infection for those 

seated directly adjacent to the student.  

 

 
 
FIGURE 7C: Infected Air with Box Fan Classroom. 

 

 

Figure 7C  illustrates the difference of the air emitted from the 

infected students once a box fan blows sterilized air into the classroom. In 

the left corner, an air cleaner (blue) can also be seen. 
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Together, these two tools mitigates the circulation of air contaminated 

with viral load. 

 

 
 
FIGURE 7D: Infected Air in Recirculated Classroom. 

 
 

Figure 7D depicts the difference of the air emitted from the infected 

students once a box fan blows infected air outside of the classroom and 

recirculates sterilized air via an air cleaner. In this schematic, the air 

cleaner is in the center of the room. This depiction illustrates the safest 

classroom, as infected air is redirected outside and an air cleaner 

sterilizers the room. 

Conclusively, a strategic ventilation system is needed to reduce the 

spread of COVID-19. 

 

Conclusion 
The high levels of interaction between primary students within the 

classroom and between classes makes implementing appropriate 

mitigation strategies extremely difficult. 

Effective contact tracing, testing, and isolation are needed to control 

the spread of COVID within the population. Without strictly set protocol, 

managing and mitigating the spread of disease while allowing students to 

meet in person is a costly and difficult task because of the sociability of the 

networks of primary school students. As Benjamin Linas, associate 

professor of medicine and epidemiology at Boston University School of 

Medicine stated, “You can only open your school safely if you have COVID 

under control in your community”, a primary school is one large community 

with high interaction between students and teachers. At the present time, 

given our understanding of primary school networks, re-opening of schools 

is a high-risk decision. If classrooms must open, intentional strategies must 

be implemented to reduce the contact between students. This includes 
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reducing class size, social distancing in the classroom, utilizing tools for 

mitigation with a particular focus on ventilation systems, and adopting a 

hybrid approach to reduce the number of students attending school on any 

given day. This must be paired with educational interventions with students 

and teachers about the risks of COVID-19 and how easily it can be spread 

in the school environment. Students and teachers must be collaborators in 

the effort to mitigate disease in their classrooms. Disease mitigation is a 

communal effort and primary schools remain amongst our most valuable 

and most vulnerable communities. 
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